File size: 6,242 Bytes
c718aa0
 
 
 
 
c723280
5cdef11
c718aa0
 
 
 
 
183474c
c718aa0
 
 
 
9ebf574
c718aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42e5ac3
711ed71
dec705e
 
5cdef11
dec705e
 
 
 
 
5cdef11
dec705e
 
 
 
 
 
c718aa0
dec705e
c718aa0
5cdef11
dec705e
5cdef11
c718aa0
 
 
 
 
 
 
 
5cdef11
 
 
 
 
c718aa0
 
 
 
 
 
 
 
 
 
 
 
 
5cdef11
c718aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cdef11
c718aa0
 
 
 
 
 
 
 
5cdef11
c718aa0
 
 
75a2814
 
 
dec705e
07a8650
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import torch
import uuid
import nest_asyncio
import asyncio
import os
#import omegaConf

torch.classes.__path__ = []

# Setup for HTTP API Calls
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())

if "feedback_key" not in st.session_state:
    st.session_state.feedback_key = 0

#corpus_keys = 'first.last'

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?", "avatar": 'πŸ€–'}]
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True


    def generate_response(question):
        response = vq.submit_query(question, languages[st.session_state.language])
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question, languages[st.session_state.language])
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Questions to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        #corpus_keys = str(os.environ["first, last"]).split(',')
        cfg = "SBS MMMMAPPPPEEERR", # omegaConf.create({
        #    'corpus_keys': corpus_keys,
        #    'api_key': str(os.environ['api_key']),
        #    'title': os.environ['title'],
        #    'source_data_desc': os.environ['source_data_desc'],
        #    'streaming': isTrue(os.environ.get('streaming', False)),
        #    'prompt_name': os.environ.get('prompt_name', None),
        #    'examples': os.environ.get('examples', None),
        #    'language': 'English'
        #})
        #st.session_state.cfg = cfg
        #st.session_state.ex_prompt = None
        #st.session_state.first_turn = True
        #st.session_state.language = cfg.language
        #example_messages = [example.strip() for example in cfg.examples.split(",")]
        #st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        #st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    #cfg = st.session_state.cfg
    #vq = st.session_state.vq
    st.set_page_config(page_title=cfg, layout="wide")

    # left side content
    with st.sidebar:
        #image = Image.open('Vectara-logo.png')
        #st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses outside RAG to ask questions about {cfg.source_data_desc}\n")
        
        #cfg.language = st.selectbox('Language:', languages.keys())
        #if st.session_state.language != cfg.language:
        #    st.session_state.language = cfg.language
        #    reset()
        #    st.rerun()

        st.markdown("\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.markdown("---")
        st.markdown(
            "## Temporary test demo only\n"
        )       

    st.markdown(f"<center> <h2> Header Demo Test: {cfg} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        reset()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=message["avatar"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt, "avatar": 'πŸ§‘β€πŸ’»'})
        with st.chat_message("user", avatar="πŸ§‘β€πŸ’»"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar="πŸ€–"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt)
                response = st.write_stream(stream)
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)

            response = escape_dollars_outside_latex(response)
            message = {"role": "assistant", "content": response, "avatar": 'πŸ€–'}
            st.session_state.messages.append(message)

            # Send query and response to Amplitude Analytics
            send_amplitude_data(
                user_query=st.session_state.messages[-2]["content"],
                chat_response=st.session_state.messages[-1]["content"],
                demo_name=cfg #["title"],
                language=st.session_state.language
            )
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"user_query": st.session_state.messages[-2]["content"],
                                                "chat_response": st.session_state.messages[-1]["content"],
                                                "demo_name": cfg #["title"],
                                                "response_language": st.session_state.language})
    
     
if __name__ == "__main__":
    st.set_page_config(page_title="Sticky toolbar test", layout="wide")
    nest_asyncio.apply()
    asyncio.run(launch_bot())

for i in range(100):
    st.write(f"This is scrollable content line {i}")