Update pages/type_text.py
Browse files- pages/type_text.py +7 -10
pages/type_text.py
CHANGED
@@ -41,14 +41,14 @@ numMAPPINGS_input = 5
|
|
41 |
@st.cache_resource
|
42 |
def load_model():
|
43 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
|
|
|
|
|
|
|
|
44 |
return model
|
45 |
model = load_model()
|
46 |
|
47 |
-
|
48 |
-
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
49 |
-
#model = SentenceTransformers('all-distilroberta-v1')
|
50 |
-
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
51 |
-
#model = SentenceTransformer('clips/mfaq')
|
52 |
|
53 |
INTdesc_embedding = model.encode(INTdesc_input)
|
54 |
|
@@ -73,12 +73,11 @@ HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
|
73 |
|
74 |
@st.cache_resource
|
75 |
def load_pipe():
|
76 |
-
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
|
|
77 |
return pipe
|
78 |
pipe = load_pipe()
|
79 |
|
80 |
-
#pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
81 |
-
|
82 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
83 |
dfALL = pd.DataFrame.from_dict(dictA)
|
84 |
|
@@ -97,8 +96,6 @@ if INTdesc_input is not None and createSBScodes_clicked == True:
|
|
97 |
|
98 |
st.dataframe(data=dfALL, hide_index=True)
|
99 |
|
100 |
-
display_format = "ask REASONING MODEL: Which, if any, of the above SBS descriptions corresponds best to " + INTdesc_input +"? "
|
101 |
-
#st.write(display_format)
|
102 |
question = "Which one, if any, of the below Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|
103 |
shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]]
|
104 |
prompt = question + " " +"A: "+ shortlist[0] + " " +"B: " + shortlist[1] + " " + "C: " + shortlist[2] + " " + "D: " + shortlist[3] + " " + "E: " + shortlist[4]
|
|
|
41 |
@st.cache_resource
|
42 |
def load_model():
|
43 |
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
44 |
+
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
45 |
+
#model = SentenceTransformers('all-distilroberta-v1')
|
46 |
+
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
47 |
+
#model = SentenceTransformer('clips/mfaq')
|
48 |
return model
|
49 |
model = load_model()
|
50 |
|
51 |
+
|
|
|
|
|
|
|
|
|
52 |
|
53 |
INTdesc_embedding = model.encode(INTdesc_input)
|
54 |
|
|
|
73 |
|
74 |
@st.cache_resource
|
75 |
def load_pipe():
|
76 |
+
#pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
77 |
+
pipe = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct", device_map=device,) # device_map="auto", torch_dtype="auto"
|
78 |
return pipe
|
79 |
pipe = load_pipe()
|
80 |
|
|
|
|
|
81 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
82 |
dfALL = pd.DataFrame.from_dict(dictA)
|
83 |
|
|
|
96 |
|
97 |
st.dataframe(data=dfALL, hide_index=True)
|
98 |
|
|
|
|
|
99 |
question = "Which one, if any, of the below Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|
100 |
shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]]
|
101 |
prompt = question + " " +"A: "+ shortlist[0] + " " +"B: " + shortlist[1] + " " + "C: " + shortlist[2] + " " + "D: " + shortlist[3] + " " + "E: " + shortlist[4]
|