Upload type_text_v10.py
Browse files- type_text_v10.py +126 -0
type_text_v10.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from io import StringIO
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
from transformers import pipeline # AutoTokenizer, AutoModelForCausalLM, AutoModelForTokenClassification
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
import os
|
10 |
+
os.getenv("HF_TOKEN")
|
11 |
+
|
12 |
+
def get_device_map() -> str:
|
13 |
+
return 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
device = get_device_map() # 'cpu'
|
15 |
+
|
16 |
+
def on_click():
|
17 |
+
st.session_state.user_input = ""
|
18 |
+
|
19 |
+
#@st.cache
|
20 |
+
def convert_df(df:pd.DataFrame):
|
21 |
+
return df.to_csv(index=False).encode('utf-8')
|
22 |
+
|
23 |
+
#@st.cache
|
24 |
+
def convert_json(df:pd.DataFrame):
|
25 |
+
result = df.to_json(orient="index")
|
26 |
+
parsed = json.loads(result)
|
27 |
+
json_string = json.dumps(parsed)
|
28 |
+
#st.json(json_string, expanded=True)
|
29 |
+
return json_string
|
30 |
+
|
31 |
+
INTdesc_input = st.text_input("Type internal description", key="user_input")
|
32 |
+
|
33 |
+
createSBScodes, right_column = st.columns(2)
|
34 |
+
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
|
35 |
+
right_column.button("Reset", on_click=on_click)
|
36 |
+
|
37 |
+
numMAPPINGS_input = 5
|
38 |
+
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
39 |
+
#st.button("Clear text", on_click=on_click)
|
40 |
+
|
41 |
+
@st.cache_resource
|
42 |
+
def load_model():
|
43 |
+
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
44 |
+
return model
|
45 |
+
model = load_model()
|
46 |
+
|
47 |
+
#model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
48 |
+
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
49 |
+
#model = SentenceTransformers('all-distilroberta-v1')
|
50 |
+
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
51 |
+
#model = SentenceTransformer('clips/mfaq')
|
52 |
+
|
53 |
+
INTdesc_embedding = model.encode(INTdesc_input)
|
54 |
+
|
55 |
+
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
56 |
+
|
57 |
+
#df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
58 |
+
#df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
59 |
+
from_line = 0 # Imaging services chapter start, adjust as needed
|
60 |
+
to_line = 10080 # Imaging services chapter end, adjust as needed
|
61 |
+
nrows = to_line - from_line + 1
|
62 |
+
skiprows = list(range(1,from_line - 1))
|
63 |
+
df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
|
64 |
+
#st.write(df_SBS.head(5))
|
65 |
+
|
66 |
+
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
67 |
+
SBScorpus_embeddings = model.encode(SBScorpus)
|
68 |
+
|
69 |
+
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
70 |
+
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|
71 |
+
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
|
72 |
+
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
73 |
+
|
74 |
+
@st.cache_resource
|
75 |
+
def load_pipe():
|
76 |
+
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
77 |
+
return pipe
|
78 |
+
pipe = load_pipe()
|
79 |
+
|
80 |
+
#pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
81 |
+
|
82 |
+
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
83 |
+
dfALL = pd.DataFrame.from_dict(dictA)
|
84 |
+
|
85 |
+
if INTdesc_input is not None and createSBScodes_clicked == True:
|
86 |
+
for i, result in enumerate(HF_model_results_displayed):
|
87 |
+
dictA.update({"Score": "%.4f" % result[0]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[0]["corpus_id"]]})
|
88 |
+
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
89 |
+
dictA.update({"Score": "%.4f" % result[1]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[1]["corpus_id"]]})
|
90 |
+
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
91 |
+
dictA.update({"Score": "%.4f" % result[2]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[2]["corpus_id"]]})
|
92 |
+
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
93 |
+
dictA.update({"Score": "%.4f" % result[3]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[3]["corpus_id"]]})
|
94 |
+
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
95 |
+
dictA.update({"Score": "%.4f" % result[4]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[4]["corpus_id"]]})
|
96 |
+
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
97 |
+
|
98 |
+
st.dataframe(data=dfALL, hide_index=True)
|
99 |
+
|
100 |
+
display_format = "ask REASONING MODEL: Which, if any, of the above SBS descriptions corresponds best to " + INTdesc_input +"? "
|
101 |
+
#st.write(display_format)
|
102 |
+
question = "Which one, if any, of the below Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|
103 |
+
shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]]
|
104 |
+
prompt = question + " " +"A: "+ shortlist[0] + " " +"B: " + shortlist[1] + " " + "C: " + shortlist[2] + " " + "D: " + shortlist[3] + " " + "E: " + shortlist[4]
|
105 |
+
st.write(prompt)
|
106 |
+
|
107 |
+
messages = [
|
108 |
+
{"role": "system", "content": "You are a knowledgable AI assistant who always answers truthfully and precisely!"},
|
109 |
+
{"role": "user", "content": prompt},
|
110 |
+
]
|
111 |
+
outputs = pipe(
|
112 |
+
messages,
|
113 |
+
max_new_tokens=256,
|
114 |
+
)
|
115 |
+
st.write(outputs[0]["generated_text"][-1]["content"])
|
116 |
+
|
117 |
+
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
118 |
+
with b1:
|
119 |
+
#csvbutton = download_button(results, "results.csv", "π₯ Download .csv")
|
120 |
+
csvbutton = st.download_button(label="π₯ Download .csv", data=convert_df(dfALL), file_name= "results.csv", mime='text/csv', key='csv_b')
|
121 |
+
with b2:
|
122 |
+
#textbutton = download_button(results, "results.txt", "π₯ Download .txt")
|
123 |
+
textbutton = st.download_button(label="π₯ Download .txt", data=convert_df(dfALL), file_name= "results.text", mime='text/plain', key='text_b')
|
124 |
+
with b3:
|
125 |
+
#jsonbutton = download_button(results, "results.json", "π₯ Download .json")
|
126 |
+
jsonbutton = st.download_button(label="π₯ Download .json", data=convert_json(dfALL), file_name= "results.json", mime='application/json', key='json_b')
|