Update pages/type_text.py
Browse files- pages/type_text.py +2 -1
pages/type_text.py
CHANGED
@@ -59,6 +59,7 @@ def load_model():
|
|
59 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
60 |
#model = SentenceTransformer('clips/mfaq')
|
61 |
|
|
|
62 |
#INTdesc_embedding = model.encode(INTdesc_input)
|
63 |
|
64 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
@@ -73,7 +74,7 @@ df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skipr
|
|
73 |
#st.write(df_SBS.head(5))
|
74 |
|
75 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
76 |
-
SBScorpus_embeddings =
|
77 |
|
78 |
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
79 |
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|
|
|
59 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
60 |
#model = SentenceTransformer('clips/mfaq')
|
61 |
|
62 |
+
load_model()
|
63 |
#INTdesc_embedding = model.encode(INTdesc_input)
|
64 |
|
65 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
|
|
74 |
#st.write(df_SBS.head(5))
|
75 |
|
76 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
77 |
+
SBScorpus_embeddings = INTdesc_embedding.encode(SBScorpus)
|
78 |
|
79 |
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
80 |
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|