Update pages/type_text.py
Browse files- pages/type_text.py +1 -1
pages/type_text.py
CHANGED
@@ -60,7 +60,7 @@ INTdesc_embedding = model.encode(INTdesc_input)
|
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
63 |
-
dfallchaps = pd.read_csv("SBS/SBS_V2_Chapter_Index_Rows.csv", index_col=
|
64 |
st.write("UUUUUUUUUUU: ", dfallchaps)
|
65 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
66 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
|
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
63 |
+
dfallchaps = pd.read_csv("SBS/SBS_V2_Chapter_Index_Rows.csv", index_col=0, usecols=["from_row_index", "to_row_index"])
|
64 |
st.write("UUUUUUUUUUU: ", dfallchaps)
|
65 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
66 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|