Update pages/type_text.py
Browse files- pages/type_text.py +16 -12
pages/type_text.py
CHANGED
@@ -34,14 +34,14 @@ def convert_json(df:pd.DataFrame):
|
|
34 |
#st.json(json_string, expanded=True)
|
35 |
return json_string
|
36 |
|
37 |
-
INTdesc_input = st.text_input("Type internal description
|
38 |
|
39 |
createSBScodes, right_column = st.columns(2)
|
40 |
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
|
41 |
right_column.button("Reset", on_click=on_click)
|
42 |
|
43 |
numMAPPINGS_input = 5
|
44 |
-
#numMAPPINGS_input = st.text_input("Type number of mappings
|
45 |
#st.button("Clear text", on_click=on_click)
|
46 |
|
47 |
@st.cache_resource
|
@@ -54,19 +54,23 @@ def load_model():
|
|
54 |
return model
|
55 |
model = load_model()
|
56 |
|
57 |
-
|
58 |
|
59 |
INTdesc_embedding = model.encode(INTdesc_input)
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
63 |
-
#df_SBS = pd.read_csv("
|
64 |
-
#df_SBS = pd.read_csv("
|
65 |
-
from_row_index = 7725 # Imaging services chapter start, adjust as needed
|
66 |
-
to_row_index = 8239 # Imaging services chapter end, adjust as needed
|
67 |
-
nrows = to_row_index - from_row_index + 1
|
68 |
-
skiprows = list(range(1,from_row_index - 1))
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
#st.write(df_SBS.head(5))
|
71 |
|
72 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
@@ -79,8 +83,8 @@ HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
|
79 |
|
80 |
@st.cache_resource
|
81 |
def load_pipe():
|
82 |
-
|
83 |
-
pipe = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct", device_map=device,) # device_map="auto", torch_dtype="auto"
|
84 |
return pipe
|
85 |
pipe = load_pipe()
|
86 |
|
|
|
34 |
#st.json(json_string, expanded=True)
|
35 |
return json_string
|
36 |
|
37 |
+
INTdesc_input = st.text_input("Type internal description", key="user_input")
|
38 |
|
39 |
createSBScodes, right_column = st.columns(2)
|
40 |
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
|
41 |
right_column.button("Reset", on_click=on_click)
|
42 |
|
43 |
numMAPPINGS_input = 5
|
44 |
+
#numMAPPINGS_input = st.text_input("Type number of mappings", key="user_input_numMAPPINGS")
|
45 |
#st.button("Clear text", on_click=on_click)
|
46 |
|
47 |
@st.cache_resource
|
|
|
54 |
return model
|
55 |
model = load_model()
|
56 |
|
57 |
+
selected_chapters_dict = {0: [], 1:[], 2:
|
58 |
|
59 |
INTdesc_embedding = model.encode(INTdesc_input)
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
63 |
+
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
64 |
+
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
65 |
+
#from_row_index = 7725 # Imaging services chapter start, adjust as needed
|
66 |
+
#to_row_index = 8239 # Imaging services chapter end, adjust as needed
|
67 |
+
#nrows = to_row_index - from_row_index + 1
|
68 |
+
#skiprows = list(range(1,from_row_index - 1))
|
69 |
+
|
70 |
+
|
71 |
+
selected_rows_to_read =
|
72 |
+
df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", skiprows = lambda x: x not in specific_rows)
|
73 |
+
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
|
74 |
#st.write(df_SBS.head(5))
|
75 |
|
76 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
|
|
83 |
|
84 |
@st.cache_resource
|
85 |
def load_pipe():
|
86 |
+
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
87 |
+
#pipe = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct", device_map=device,) # device_map="auto", torch_dtype="auto"
|
88 |
return pipe
|
89 |
pipe = load_pipe()
|
90 |
|