Delete pages/demo_type_text.py
Browse files- pages/demo_type_text.py +0 -205
pages/demo_type_text.py
DELETED
@@ -1,205 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
from io import StringIO
|
4 |
-
import json
|
5 |
-
import torch
|
6 |
-
from transformers import pipeline # AutoTokenizer, AutoModelForCausalLM, AutoModelForTokenClassification
|
7 |
-
from sentence_transformers import SentenceTransformer, util
|
8 |
-
|
9 |
-
import os
|
10 |
-
os.getenv("HF_TOKEN")
|
11 |
-
|
12 |
-
#for k, v in st.session_state.items():
|
13 |
-
# st.session_state[k] = v
|
14 |
-
|
15 |
-
#st.title("📘Map internal description to SBS codes V2.0")
|
16 |
-
#st.subheader("Select specific Chapter for quicker results")
|
17 |
-
#df_chapters = pd.read_csv("SBS_V2_0/Chapter_Index_Rows.csv")
|
18 |
-
|
19 |
-
#startrowindex_list = df_chapters["from_row_index"].tolist()
|
20 |
-
#endrowindex_list = df_chapters["to_row_index"].tolist()
|
21 |
-
#allchapters_rows_list = []
|
22 |
-
#for s, e in zip(startrowindex_list, endrowindex_list):
|
23 |
-
# eachchapter_rows_list = list(range(s,e))
|
24 |
-
# allchapters_rows_list.append(eachchapter_rows_list)
|
25 |
-
#f_chapters['range_of_rows'] = allchapters_rows_list
|
26 |
-
|
27 |
-
def dataframe_with_selections(df_chapters: pd.DataFrame, init_value: bool = False) -> pd.DataFrame:
|
28 |
-
df_with_selections = df_chapters.copy()
|
29 |
-
df_with_selections.insert(0, "Select", init_value)
|
30 |
-
|
31 |
-
# Get dataframe row-selections from user with st.data_editor
|
32 |
-
edited_df = st.data_editor(
|
33 |
-
df_with_selections,
|
34 |
-
hide_index=True,
|
35 |
-
column_config={"Select": st.column_config.CheckboxColumn(required=True)},
|
36 |
-
disabled=df_chapters.columns,
|
37 |
-
)
|
38 |
-
|
39 |
-
# Filter the dataframe using the temporary column, then drop the column
|
40 |
-
selected_rows = edited_df[edited_df.Select]
|
41 |
-
return selected_rows.drop('Select', axis=1)
|
42 |
-
|
43 |
-
#if "selected_chapters" not in st.session_state:
|
44 |
-
# st.session_state['selected_chapters'] = []
|
45 |
-
# st.session_state['selected_rows'] = []
|
46 |
-
#selected_chapters_list = st.session_state.selected_chapters
|
47 |
-
#if "selected_rows" not in st.session_state:
|
48 |
-
# st.session_state['selected_rows'] = []
|
49 |
-
#selected_rows_list = st.session_state.selected_rows
|
50 |
-
|
51 |
-
#selected_chapters = dataframe_with_selections(df_chapters)
|
52 |
-
#st.write("Your selection:")
|
53 |
-
#st.write(selected_chapters)
|
54 |
-
#selected_rows = dataframe_with_selections(df_chapters)
|
55 |
-
#st.write("Your selection:")
|
56 |
-
#st.write(selected_rows)
|
57 |
-
|
58 |
-
#selected_chapters_list = selected_chapters.iloc[:,0].tolist()
|
59 |
-
#st.write("SELECTED CHAPTERS: ", selected_chapters_list)
|
60 |
-
#selected_rows_list = selected_chapters.iloc[:,6].tolist()
|
61 |
-
#st.write("SELECTED ROWS: ", selected_rows_list)
|
62 |
-
|
63 |
-
#if selected_chapters is not None:
|
64 |
-
# st.session_state.selected_chapters = selected_chapters_list
|
65 |
-
# st.session_state.selected_rows = selected_rows_list
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
#selected_chapters_floatlist = list(st.session_state.items())[0][1]
|
71 |
-
#selected_chapters_intlist = [int(i) for i in selected_chapters_floatlist]
|
72 |
-
#st.write("SELECTED CHAPTERS: ", selected_chapters_intlist)
|
73 |
-
#for item in st.session_state.items():
|
74 |
-
# st.write("IIIIIIIII: ", item)
|
75 |
-
#selected_rows_list = list(st.session_state.items())[1][1]
|
76 |
-
#st.write("SELECTED ROWS: ", selected_rows_list)
|
77 |
-
|
78 |
-
def get_device_map() -> str:
|
79 |
-
return 'cuda' if torch.cuda.is_available() else 'cpu'
|
80 |
-
device = get_device_map() # 'cpu'
|
81 |
-
|
82 |
-
def on_click():
|
83 |
-
st.session_state.user_input = ""
|
84 |
-
|
85 |
-
#@st.cache
|
86 |
-
def convert_df(df:pd.DataFrame):
|
87 |
-
return df.to_csv(index=False).encode('utf-8')
|
88 |
-
|
89 |
-
#@st.cache
|
90 |
-
def convert_json(df:pd.DataFrame):
|
91 |
-
result = df.to_json(orient="index")
|
92 |
-
parsed = json.loads(result)
|
93 |
-
json_string = json.dumps(parsed)
|
94 |
-
#st.json(json_string, expanded=True)
|
95 |
-
return json_string
|
96 |
-
|
97 |
-
INTdesc_input = st.text_input("Type internal description", key="user_input")
|
98 |
-
|
99 |
-
createSBScodes, right_column = st.columns(2)
|
100 |
-
createSBScodes_clicked = createSBScodes.button("Map to SBS codes", key="user_createSBScodes")
|
101 |
-
right_column.button("Reset", on_click=on_click)
|
102 |
-
|
103 |
-
numMAPPINGS_input = 5
|
104 |
-
#numMAPPINGS_input = st.text_input("Type number of mappings", key="user_input_numMAPPINGS")
|
105 |
-
#st.button("Clear text", on_click=on_click)
|
106 |
-
|
107 |
-
@st.cache_resource
|
108 |
-
def load_model():
|
109 |
-
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
110 |
-
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
111 |
-
#model = SentenceTransformers('all-distilroberta-v1')
|
112 |
-
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
113 |
-
#model = SentenceTransformer('clips/mfaq')
|
114 |
-
return model
|
115 |
-
model = load_model()
|
116 |
-
|
117 |
-
INTdesc_embedding = model.encode(INTdesc_input)
|
118 |
-
|
119 |
-
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
120 |
-
|
121 |
-
#df_allchaps = pd.read_csv("SBS_V2_0/Chapter_Index_Rows.csv", usecols=["Chapter", "from_row_index", "to_row_index"])
|
122 |
-
#st.dataframe(df_allchaps)
|
123 |
-
#df_selectedchaps = df.loc[df['City'] == 'Chicago']
|
124 |
-
|
125 |
-
#dict_allchaps = df_allchaps.to_dict(orient='index')
|
126 |
-
#st.write("ALL CHAPTERS: ", dict_allchaps)
|
127 |
-
#for chapter in dict_allchaps.get("Chapter"):
|
128 |
-
# st.write(chapter)
|
129 |
-
|
130 |
-
selected_rows_list = []
|
131 |
-
|
132 |
-
#if len(selected_rows_list) == 0:
|
133 |
-
# st.warning("Please select at least one chapter")
|
134 |
-
# selected_rows_list = [0, 10080]
|
135 |
-
#st.write("SELECTED ROWS: ", selected_rows_list)
|
136 |
-
#df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows = lambda x: x not in selected_rows_list)
|
137 |
-
|
138 |
-
#df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
139 |
-
#df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
140 |
-
from_row_index = 0 # Imaging services chapter start, adjust as needed
|
141 |
-
to_row_index = 10080 # Imaging services chapter end, adjust as needed
|
142 |
-
nrows = to_row_index - from_row_index + 1
|
143 |
-
skiprows = list(range(1,from_row_index - 1))
|
144 |
-
df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
|
145 |
-
st.write(df_SBS.head(5))
|
146 |
-
|
147 |
-
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
148 |
-
SBScorpus_embeddings = model.encode(SBScorpus)
|
149 |
-
|
150 |
-
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
151 |
-
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|
152 |
-
HF_model_results_sorted = sorted(HF_model_results, key=lambda x: x[1], reverse=True)
|
153 |
-
HF_model_results_displayed = HF_model_results_sorted[0:numMAPPINGS_input]
|
154 |
-
|
155 |
-
@st.cache_resource
|
156 |
-
def load_pipe():
|
157 |
-
pipe = pipeline("text-generation", model="meta-llama/Llama-3.2-1B-Instruct", device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
158 |
-
#pipe = pipeline("text-generation", model="Qwen/Qwen2-1.5B-Instruct", device_map=device,) # device_map="auto", torch_dtype="auto"
|
159 |
-
return pipe
|
160 |
-
pipe = load_pipe()
|
161 |
-
|
162 |
-
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
163 |
-
dfALL = pd.DataFrame.from_dict(dictA)
|
164 |
-
|
165 |
-
if INTdesc_input is not None and createSBScodes_clicked == True:
|
166 |
-
for i, result in enumerate(HF_model_results_displayed):
|
167 |
-
dictA.update({"Score": "%.4f" % result[0]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[0]["corpus_id"]]})
|
168 |
-
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
169 |
-
dictA.update({"Score": "%.4f" % result[1]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[1]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[1]["corpus_id"]]})
|
170 |
-
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
171 |
-
dictA.update({"Score": "%.4f" % result[2]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[2]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[2]["corpus_id"]]})
|
172 |
-
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
173 |
-
dictA.update({"Score": "%.4f" % result[3]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[3]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[3]["corpus_id"]]})
|
174 |
-
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
175 |
-
dictA.update({"Score": "%.4f" % result[4]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[4]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[4]["corpus_id"]]})
|
176 |
-
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
177 |
-
|
178 |
-
st.dataframe(data=dfALL, hide_index=True)
|
179 |
-
|
180 |
-
question = "Which one, if any, of the following Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|
181 |
-
shortlist = [SBScorpus[result[0]["corpus_id"]], SBScorpus[result[1]["corpus_id"]], SBScorpus[result[2]["corpus_id"]], SBScorpus[result[3]["corpus_id"]], SBScorpus[result[4]["corpus_id"]]]
|
182 |
-
prompt = question + " " +"A: "+ shortlist[0] + " " +"B: " + shortlist[1] + " " + "C: " + shortlist[2] + " " + "D: " + shortlist[3] + " " + "E: " + shortlist[4]
|
183 |
-
st.write(prompt)
|
184 |
-
|
185 |
-
messages = [
|
186 |
-
{"role": "system", "content": "You are a knowledgable AI assistant who always answers truthfully and precisely!"},
|
187 |
-
{"role": "user", "content": prompt},
|
188 |
-
]
|
189 |
-
outputs = pipe(
|
190 |
-
messages,
|
191 |
-
max_new_tokens=256,
|
192 |
-
)
|
193 |
-
st.write(outputs[0]["generated_text"][-1]["content"])
|
194 |
-
|
195 |
-
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
196 |
-
with b1:
|
197 |
-
#csvbutton = download_button(results, "results.csv", "📥 Download .csv")
|
198 |
-
csvbutton = st.download_button(label="📥 Download .csv", data=convert_df(dfALL), file_name= "results.csv", mime='text/csv', key='csv_b')
|
199 |
-
with b2:
|
200 |
-
#textbutton = download_button(results, "results.txt", "📥 Download .txt")
|
201 |
-
textbutton = st.download_button(label="📥 Download .txt", data=convert_df(dfALL), file_name= "results.text", mime='text/plain', key='text_b')
|
202 |
-
with b3:
|
203 |
-
#jsonbutton = download_button(results, "results.json", "📥 Download .json")
|
204 |
-
jsonbutton = st.download_button(label="📥 Download .json", data=convert_json(dfALL), file_name= "results.json", mime='application/json', key='json_b')
|
205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|