georad commited on
Commit
5ca6936
·
verified ·
1 Parent(s): 52aa7d6

Update pages/type_text.py

Browse files
Files changed (1) hide show
  1. pages/type_text.py +12 -3
pages/type_text.py CHANGED
@@ -42,8 +42,17 @@ numMAPPINGS_input = 5
42
  #numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
43
  #st.button("Clear text", on_click=on_click)
44
 
45
-
46
- model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
 
 
 
 
 
 
 
 
 
47
  #model = SentenceTransformer('all-mpnet-base-v2') # best performance
48
  #model = SentenceTransformers('all-distilroberta-v1')
49
  #model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
@@ -63,7 +72,7 @@ df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skipr
63
  #st.write(df_SBS.head(5))
64
 
65
  SBScorpus = df_SBS['Long_Description'].values.tolist()
66
- SBScorpus_embeddings = model.encode(SBScorpus)
67
 
68
  #my_model_results = pipeline("ner", model= "checkpoint-92")
69
  HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
 
42
  #numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
43
  #st.button("Clear text", on_click=on_click)
44
 
45
+ @st.cache_resource
46
+ def load_model():
47
+ st.header("Sentence Transformer")
48
+ model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
49
+ st.success("Loaded model!")
50
+ #st.write("Turning on evaluation mode...")
51
+ #model.eval()
52
+ #st.write("Here's the model:")
53
+ return model
54
+
55
+ #model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
56
  #model = SentenceTransformer('all-mpnet-base-v2') # best performance
57
  #model = SentenceTransformers('all-distilroberta-v1')
58
  #model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
 
72
  #st.write(df_SBS.head(5))
73
 
74
  SBScorpus = df_SBS['Long_Description'].values.tolist()
75
+ SBScorpus_embeddings = load_model().encode(SBScorpus)
76
 
77
  #my_model_results = pipeline("ner", model= "checkpoint-92")
78
  HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)