Update pages/type_text.py
Browse files- pages/type_text.py +12 -3
pages/type_text.py
CHANGED
@@ -42,8 +42,17 @@ numMAPPINGS_input = 5
|
|
42 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
43 |
#st.button("Clear text", on_click=on_click)
|
44 |
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
48 |
#model = SentenceTransformers('all-distilroberta-v1')
|
49 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
@@ -63,7 +72,7 @@ df_SBS = pd.read_csv("SBS_V2_Table.csv", header=0, skip_blank_lines=False, skipr
|
|
63 |
#st.write(df_SBS.head(5))
|
64 |
|
65 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
66 |
-
SBScorpus_embeddings =
|
67 |
|
68 |
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
69 |
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|
|
|
42 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
43 |
#st.button("Clear text", on_click=on_click)
|
44 |
|
45 |
+
@st.cache_resource
|
46 |
+
def load_model():
|
47 |
+
st.header("Sentence Transformer")
|
48 |
+
model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
49 |
+
st.success("Loaded model!")
|
50 |
+
#st.write("Turning on evaluation mode...")
|
51 |
+
#model.eval()
|
52 |
+
#st.write("Here's the model:")
|
53 |
+
return model
|
54 |
+
|
55 |
+
#model = SentenceTransformer('all-MiniLM-L6-v2') # fastest
|
56 |
#model = SentenceTransformer('all-mpnet-base-v2') # best performance
|
57 |
#model = SentenceTransformers('all-distilroberta-v1')
|
58 |
#model = SentenceTransformer('sentence-transformers/msmarco-bert-base-dot-v5')
|
|
|
72 |
#st.write(df_SBS.head(5))
|
73 |
|
74 |
SBScorpus = df_SBS['Long_Description'].values.tolist()
|
75 |
+
SBScorpus_embeddings = load_model().encode(SBScorpus)
|
76 |
|
77 |
#my_model_results = pipeline("ner", model= "checkpoint-92")
|
78 |
HF_model_results = util.semantic_search(INTdesc_embedding, SBScorpus_embeddings)
|