Update pages/type_text.py
Browse files- pages/type_text.py +4 -4
pages/type_text.py
CHANGED
@@ -97,7 +97,7 @@ INTdesc_input = st.text_input("Type internal description", key="user_input")
|
|
97 |
|
98 |
placeholder, right_column = st.columns(2)
|
99 |
#placeholder_clicked = placeholder.button("Perform some action", key="user_placeholder")
|
100 |
-
right_column.button("Reset", on_click=on_click)
|
101 |
|
102 |
numMAPPINGS_input = 5
|
103 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
@@ -133,7 +133,7 @@ def load_model():
|
|
133 |
model = load_model()
|
134 |
|
135 |
|
136 |
-
mapSBS_button = st.button("Map to SBS codes")
|
137 |
|
138 |
|
139 |
INTdesc_embedding = model.encode(INTdesc_input)
|
@@ -157,7 +157,7 @@ rs_models = {
|
|
157 |
}
|
158 |
|
159 |
## Create the select box
|
160 |
-
selected_rs_model = st.selectbox('Choose a Reasoning model:', list(
|
161 |
st.write("Current selection:", selected_rs_model)
|
162 |
|
163 |
## Get the selected model
|
@@ -174,7 +174,7 @@ pipe = load_pipe()
|
|
174 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
175 |
dfALL = pd.DataFrame.from_dict(dictA)
|
176 |
|
177 |
-
if INTdesc_input is not None and
|
178 |
for i, result in enumerate(HF_model_results_displayed):
|
179 |
dictA.update({"Score": "%.4f" % result[0]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[0]["corpus_id"]]})
|
180 |
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
|
|
97 |
|
98 |
placeholder, right_column = st.columns(2)
|
99 |
#placeholder_clicked = placeholder.button("Perform some action", key="user_placeholder")
|
100 |
+
right_column.button("Reset description", on_click=on_click)
|
101 |
|
102 |
numMAPPINGS_input = 5
|
103 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
|
|
133 |
model = load_model()
|
134 |
|
135 |
|
136 |
+
mapSBS_button = st.button("Map to SBS codes", on_click=on_click, key="user_clickedSBS")
|
137 |
|
138 |
|
139 |
INTdesc_embedding = model.encode(INTdesc_input)
|
|
|
157 |
}
|
158 |
|
159 |
## Create the select box
|
160 |
+
selected_rs_model = st.selectbox('Choose a Reasoning model:', list(rs_models.keys()))
|
161 |
st.write("Current selection:", selected_rs_model)
|
162 |
|
163 |
## Get the selected model
|
|
|
174 |
dictA = {"Score": [], "SBS Code": [], "SBS Description V2.0": []}
|
175 |
dfALL = pd.DataFrame.from_dict(dictA)
|
176 |
|
177 |
+
if INTdesc_input is not None and mapSBS_button == True:
|
178 |
for i, result in enumerate(HF_model_results_displayed):
|
179 |
dictA.update({"Score": "%.4f" % result[0]["score"], "SBS Code": df_SBS.loc[df_SBS["Long_Description"] == SBScorpus[result[0]["corpus_id"]],"SBS_Code_Hyphenated"].values[0], "SBS Description V2.0": SBScorpus[result[0]["corpus_id"]]})
|
180 |
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|