Update pages/type_text.py
Browse files- pages/type_text.py +2 -57
pages/type_text.py
CHANGED
@@ -9,21 +9,6 @@ import time
|
|
9 |
import os
|
10 |
os.getenv("HF_TOKEN")
|
11 |
|
12 |
-
|
13 |
-
#hide_streamlit_style = """
|
14 |
-
# <style>
|
15 |
-
# div[data-testid="stHeader"] {
|
16 |
-
# visibility: visible;
|
17 |
-
# position: sticky;
|
18 |
-
# top: 0
|
19 |
-
# }
|
20 |
-
# </style>
|
21 |
-
# """
|
22 |
-
#st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
23 |
-
|
24 |
-
#st.title("Map internal descriptions to SBS codes with Sentence Transformer + Reasoning Models")
|
25 |
-
#st.subheader("Select specific Chapter for quicker results")
|
26 |
-
|
27 |
def get_device_map() -> str:
|
28 |
return 'cuda' if torch.cuda.is_available() else 'cpu'
|
29 |
device = get_device_map() # 'cpu'
|
@@ -47,46 +32,6 @@ def convert_json(df:pd.DataFrame):
|
|
47 |
#st.json(json_string, expanded=True)
|
48 |
return json_string
|
49 |
|
50 |
-
def scroll_to_bottom():
|
51 |
-
# This script uses Streamlit's message system to ensure proper timing
|
52 |
-
js_code = """
|
53 |
-
<script>
|
54 |
-
// Function to scroll to bottom
|
55 |
-
function scrollToBottom() {
|
56 |
-
// This targets Streamlit's specific structure
|
57 |
-
const mainContainer = window.parent.document.querySelector('.stApp');
|
58 |
-
if (mainContainer) {
|
59 |
-
mainContainer.scrollTo({
|
60 |
-
top: mainContainer.scrollHeight,
|
61 |
-
behavior: 'smooth'
|
62 |
-
});
|
63 |
-
}
|
64 |
-
}
|
65 |
-
|
66 |
-
// Use MutationObserver to detect when content is added
|
67 |
-
const observer = new MutationObserver((mutations) => {
|
68 |
-
scrollToBottom();
|
69 |
-
});
|
70 |
-
|
71 |
-
// Start observing the document body for changes
|
72 |
-
const streamlitDoc = window.parent.document;
|
73 |
-
observer.observe(streamlitDoc.body, {
|
74 |
-
childList: true,
|
75 |
-
subtree: true
|
76 |
-
});
|
77 |
-
|
78 |
-
// Initial scroll and disconnect after some time
|
79 |
-
scrollToBottom();
|
80 |
-
setTimeout(() => {
|
81 |
-
observer.disconnect();
|
82 |
-
// One final scroll
|
83 |
-
scrollToBottom();
|
84 |
-
}, 1000);
|
85 |
-
</script>
|
86 |
-
"""
|
87 |
-
|
88 |
-
# Use unsafe_allow_html to inject JavaScript
|
89 |
-
st.markdown(js_code, unsafe_allow_html=True)
|
90 |
|
91 |
#df_chapters = pd.read_csv("SBS_V2_0/Chapter_Index_Rows.csv")
|
92 |
df_chapters = pd.read_csv("SBS_V2_0/Chapter_Index_Rows_with_total.csv")
|
@@ -230,7 +175,7 @@ if INTdesc_input is not None and st.button("Map to SBS codes", key="run_st_model
|
|
230 |
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
231 |
|
232 |
st.dataframe(data=dfALL, hide_index=True)
|
233 |
-
|
234 |
|
235 |
display_format = "ask REASONING MODEL: Which, if any, of the following SBS descriptions corresponds best to " + INTdesc_input +"? "
|
236 |
#st.write(display_format)
|
@@ -254,7 +199,7 @@ if INTdesc_input is not None and st.button("Map to SBS codes", key="run_st_model
|
|
254 |
max_new_tokens=256,
|
255 |
)
|
256 |
st.write(outputs[0]["generated_text"][-1]["content"])
|
257 |
-
|
258 |
|
259 |
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
260 |
with b1:
|
|
|
9 |
import os
|
10 |
os.getenv("HF_TOKEN")
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
def get_device_map() -> str:
|
13 |
return 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
device = get_device_map() # 'cpu'
|
|
|
32 |
#st.json(json_string, expanded=True)
|
33 |
return json_string
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
#df_chapters = pd.read_csv("SBS_V2_0/Chapter_Index_Rows.csv")
|
37 |
df_chapters = pd.read_csv("SBS_V2_0/Chapter_Index_Rows_with_total.csv")
|
|
|
175 |
dfALL = pd.concat([dfALL, pd.DataFrame([dictA])], ignore_index=True)
|
176 |
|
177 |
st.dataframe(data=dfALL, hide_index=True)
|
178 |
+
auto_scroll_to_bottom()
|
179 |
|
180 |
display_format = "ask REASONING MODEL: Which, if any, of the following SBS descriptions corresponds best to " + INTdesc_input +"? "
|
181 |
#st.write(display_format)
|
|
|
199 |
max_new_tokens=256,
|
200 |
)
|
201 |
st.write(outputs[0]["generated_text"][-1]["content"])
|
202 |
+
auto_scroll_to_bottom()
|
203 |
|
204 |
bs, b1, b2, b3, bLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])
|
205 |
with b1:
|