Update pages/type_text.py
Browse files- pages/type_text.py +2 -0
pages/type_text.py
CHANGED
@@ -60,6 +60,8 @@ INTdesc_embedding = model.encode(INTdesc_input)
|
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
|
|
|
|
63 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
64 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
65 |
from_row_index = 7725 # Imaging services chapter start, adjust as needed
|
|
|
60 |
|
61 |
# Semantic search, Compute cosine similarity between all pairs of SBS descriptions
|
62 |
|
63 |
+
dfallchaps = pd.read_csv("SBS/SBS_V2_Chapter_Index_Rows.csv", index_col=["Chaper", usecols=["from_row_index", "to_row_index"]])
|
64 |
+
st.write("UUUUUUUUUUU: ", dfallchaps)
|
65 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
|
66 |
#df_SBS = pd.read_csv("SBS/SBS_V2_Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
|
67 |
from_row_index = 7725 # Imaging services chapter start, adjust as needed
|