Update pages/type_text.py
Browse files- pages/type_text.py +26 -26
pages/type_text.py
CHANGED
|
@@ -147,6 +147,32 @@ def load_model():
|
|
| 147 |
|
| 148 |
model = load_model()
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
# Semantic search, Compute cosine similarity between INTdesc_embedding and SBS descriptions
|
| 151 |
INTdesc_embedding = model.encode(INTdesc_input)
|
| 152 |
SBScorpus_embeddings = model.encode(SBScorpus)
|
|
@@ -175,32 +201,6 @@ if INTdesc_input and st.button(":blue[Map to SBS codes]", key="run_st_model"): #
|
|
| 175 |
#st.markdown('<div id="bottom"></div>', unsafe_allow_html=True)
|
| 176 |
#components.html(scroll_script, height=0, width=0)
|
| 177 |
|
| 178 |
-
|
| 179 |
-
## Define the Reasoning models
|
| 180 |
-
rs_models = {
|
| 181 |
-
'(medium speed) original model for general domain: meta-llama/Llama-3.2-1B-Instruct': 'meta-llama/Llama-3.2-1B-Instruct',
|
| 182 |
-
'(slower speed) original model for general domain: Qwen/Qwen2-1.5B-Instruct': 'Qwen/Qwen2-1.5B-Instruct',
|
| 183 |
-
'(medium speed) original model for general domain: EpistemeAI/ReasoningCore-1B-r1-0': 'EpistemeAI/ReasoningCore-1B-r1-0',
|
| 184 |
-
'(expected in future) fine-tuned model for medical domain: meta-llama/Llama-3.2-1B-Instruct': 'meta-llama/Llama-3.2-1B-Instruct',
|
| 185 |
-
'(expected in future) fine-tuned model for medical domain: Qwen/Qwen2-1.5B-Instruct': 'Qwen/Qwen2-1.5B-Instruct',
|
| 186 |
-
}
|
| 187 |
-
|
| 188 |
-
## Create the select Reasoning box
|
| 189 |
-
selected_rs_model = st.selectbox('Reasoning model:', list(rs_models.keys())) # or 'Choose a Reasoning Model'
|
| 190 |
-
#st.write("Current selection:", selected_rs_model)
|
| 191 |
-
|
| 192 |
-
## Get the selected Reasoning model
|
| 193 |
-
Reasoning_model = rs_models[selected_rs_model]
|
| 194 |
-
|
| 195 |
-
## Load the Reasoning model as pipeline ...
|
| 196 |
-
@st.cache_resource
|
| 197 |
-
def load_pipe():
|
| 198 |
-
pipe = pipeline("text-generation", model=Reasoning_model, device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
| 199 |
-
return pipe
|
| 200 |
-
|
| 201 |
-
pipe = load_pipe()
|
| 202 |
-
|
| 203 |
-
|
| 204 |
display_format = "ask REASONING MODEL: Which, if any, of the following SBS descriptions corresponds best to " + INTdesc_input +"? "
|
| 205 |
#st.write(display_format)
|
| 206 |
question = "Which one, if any, of the following Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|
|
|
|
| 147 |
|
| 148 |
model = load_model()
|
| 149 |
|
| 150 |
+
|
| 151 |
+
## Define the Reasoning models
|
| 152 |
+
rs_models = {
|
| 153 |
+
'(medium speed) original model for general domain: meta-llama/Llama-3.2-1B-Instruct': 'meta-llama/Llama-3.2-1B-Instruct',
|
| 154 |
+
'(slower speed) original model for general domain: Qwen/Qwen2-1.5B-Instruct': 'Qwen/Qwen2-1.5B-Instruct',
|
| 155 |
+
'(medium speed) original model for general domain: EpistemeAI/ReasoningCore-1B-r1-0': 'EpistemeAI/ReasoningCore-1B-r1-0',
|
| 156 |
+
'(expected in future) fine-tuned model for medical domain: meta-llama/Llama-3.2-1B-Instruct': 'meta-llama/Llama-3.2-1B-Instruct',
|
| 157 |
+
'(expected in future) fine-tuned model for medical domain: Qwen/Qwen2-1.5B-Instruct': 'Qwen/Qwen2-1.5B-Instruct',
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
## Create the select Reasoning box
|
| 161 |
+
selected_rs_model = st.selectbox('Reasoning model:', list(rs_models.keys())) # or 'Choose a Reasoning Model'
|
| 162 |
+
#st.write("Current selection:", selected_rs_model)
|
| 163 |
+
|
| 164 |
+
## Get the selected Reasoning model
|
| 165 |
+
Reasoning_model = rs_models[selected_rs_model]
|
| 166 |
+
|
| 167 |
+
## Load the Reasoning model as pipeline ...
|
| 168 |
+
@st.cache_resource
|
| 169 |
+
def load_pipe():
|
| 170 |
+
pipe = pipeline("text-generation", model=Reasoning_model, device_map=device,) # device_map="auto", torch_dtype=torch.bfloat16
|
| 171 |
+
return pipe
|
| 172 |
+
|
| 173 |
+
pipe = load_pipe()
|
| 174 |
+
|
| 175 |
+
|
| 176 |
# Semantic search, Compute cosine similarity between INTdesc_embedding and SBS descriptions
|
| 177 |
INTdesc_embedding = model.encode(INTdesc_input)
|
| 178 |
SBScorpus_embeddings = model.encode(SBScorpus)
|
|
|
|
| 201 |
#st.markdown('<div id="bottom"></div>', unsafe_allow_html=True)
|
| 202 |
#components.html(scroll_script, height=0, width=0)
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
display_format = "ask REASONING MODEL: Which, if any, of the following SBS descriptions corresponds best to " + INTdesc_input +"? "
|
| 205 |
#st.write(display_format)
|
| 206 |
question = "Which one, if any, of the following Saudi Billing System descriptions A, B, C, D, or E corresponds best to " + INTdesc_input +"? "
|