Update pages/type_text.py
Browse files- pages/type_text.py +17 -25
pages/type_text.py
CHANGED
@@ -103,26 +103,26 @@ numMAPPINGS_input = 5
|
|
103 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
104 |
#st.button("Clear text", on_click=on_click)
|
105 |
|
106 |
-
SentenceTransformer = st.selectbox(
|
107 |
-
"Select the Sentence Transformer model",
|
108 |
-
("all-MiniLM-L6-v2 (original model for general domain)", "all-MiniLM-L6-v2 (fine-tuned model for medical domain)",
|
109 |
-
"all-mpnet-base-v2 (original model for general domain)", "all-mpnet-base-v2 (fine-tuned model for medical domain)")
|
110 |
-
)
|
111 |
-
st.write("You selected:", SentenceTransformer)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
@st.cache_resource
|
124 |
def load_model():
|
125 |
-
model = SentenceTransformer(
|
126 |
return model
|
127 |
model = load_model()
|
128 |
|
@@ -136,14 +136,6 @@ model = load_model()
|
|
136 |
|
137 |
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
INTdesc_embedding = model.encode(INTdesc_input)
|
148 |
|
149 |
# Semantic search, Compute cosine similarity between INTdesc_embedding and SBS descriptions
|
|
|
103 |
#numMAPPINGS_input = st.text_input("Type number of mappings and hit Enter", key="user_input_numMAPPINGS")
|
104 |
#st.button("Clear text", on_click=on_click)
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
## Define the SentTrans models
|
108 |
+
st_models = {
|
109 |
+
'original model for general domain, fastest: all-MiniLM-L6-v2': 'all-MiniLM-L6-v2',
|
110 |
+
'fine-tuned model for medical domain: all-MiniLM-L6-v2': 'all-MiniLM-L6-v2',
|
111 |
+
'original model for general domain, best performance: all-mpnet-base-v2': 'all-mpnet-base-v2',
|
112 |
+
'fine-tuned model for medical domain: all-mpnet-base-v2': 'all-mpnet-base-v2',
|
113 |
+
}
|
114 |
+
|
115 |
+
## Create the select box
|
116 |
+
selected_st_model = st.selectbox('Choose a model:', list(st_models.keys()))
|
117 |
+
st.write("You selected:", selected_st_model)
|
118 |
+
|
119 |
+
## Get the selected model
|
120 |
+
SentTrans_model = st_models[selected_st_model]
|
121 |
+
|
122 |
+
## Use the model...
|
123 |
@st.cache_resource
|
124 |
def load_model():
|
125 |
+
model = SentenceTransformer(SentTrans_model)
|
126 |
return model
|
127 |
model = load_model()
|
128 |
|
|
|
136 |
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
INTdesc_embedding = model.encode(INTdesc_input)
|
140 |
|
141 |
# Semantic search, Compute cosine similarity between INTdesc_embedding and SBS descriptions
|