Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| available_models = [ | |
| "Qwen/Qwen1.5-7B-Chat", # Example: This is our Qwen model | |
| ] | |
| def initialize_chat_model(model_name): | |
| # Only load model if we haven't loaded it before, or if model_name changed | |
| if "chat_model" not in st.session_state or st.session_state.model_name != model_name: | |
| # Load the Qwen model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| model_name | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| torch_dtype="auto", | |
| device_map="auto" | |
| ) | |
| # Pick device; if you have CUDA, this will be "cuda", else it defaults to "cpu" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| # Save in session state | |
| st.session_state.chat_tokenizer = tokenizer | |
| st.session_state.chat_model = model | |
| st.session_state.device = device | |
| st.session_state.model_name = model_name | |
| def generate_response( | |
| user_input: str, | |
| model_name: str, | |
| temperature: float = 0.7, | |
| top_k: int = 50, | |
| top_p: float = 0.9, | |
| repetition_penalty: float = 1.2 | |
| ) -> str: | |
| # Make sure model is initialized | |
| initialize_chat_model(model_name) | |
| tokenizer = st.session_state.chat_tokenizer | |
| model = st.session_state.chat_model | |
| device = st.session_state.device | |
| # Construct chat messages for Qwen | |
| messages = [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| {"role": "user", "content": user_input} | |
| ] | |
| # Use Qwen's chat template | |
| text = tokenizer.apply_chat_template( | |
| messages, | |
| tokenize=False, | |
| add_generation_prompt=True | |
| ) | |
| # Tokenize and move to chosen device | |
| model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
| # Generate the output | |
| with torch.no_grad(): | |
| generated_ids = model.generate( | |
| model_inputs.input_ids, | |
| max_new_tokens=512, # Adjust as needed | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True | |
| ) | |
| # Exclude the original input tokens from the output to get only newly generated text | |
| generated_ids = [ | |
| output_ids[len(input_ids):] | |
| for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
| ] | |
| # Decode | |
| output_text = tokenizer.batch_decode( | |
| generated_ids, skip_special_tokens=True | |
| )[0] | |
| return output_text |