Spaces:
Running
Running
Merge pull request #1 from fuxialexander/buendia/read-from-s3
Browse files- Dockerfile +2 -2
- app/main.py +73 -38
Dockerfile
CHANGED
|
@@ -9,7 +9,7 @@ USER $MAMBA_USER
|
|
| 9 |
# Set the working directory in the container to /app
|
| 10 |
WORKDIR /app
|
| 11 |
# Create a new environment using mamba with specified packages
|
| 12 |
-
RUN micromamba install -n base -c conda-forge -c bioconda -y python=3.10 pip biopython
|
| 13 |
RUN micromamba install -n base -c conda-forge -c bioconda -y nglview tqdm matplotlib pandas
|
| 14 |
RUN micromamba install -n base -c conda-forge -c bioconda -y openpyxl pyarrow python-box xmlschema seaborn numpy py3Dmol pyranges scipy pyyaml zarr numcodecs
|
| 15 |
RUN micromamba install -n base -c conda-forge -c bioconda -y pybigwig networkx plotly pysam requests seqlogo MOODS urllib3 pyliftover gprofiler-official pyfaidx
|
|
@@ -57,4 +57,4 @@ EXPOSE 7681
|
|
| 57 |
# Set the working directory where your app resides
|
| 58 |
|
| 59 |
# Command to run the Gradio app automatically
|
| 60 |
-
CMD ["python", "app/main.py", "-p", "7681", "-s", "-d", "/data"]
|
|
|
|
| 9 |
# Set the working directory in the container to /app
|
| 10 |
WORKDIR /app
|
| 11 |
# Create a new environment using mamba with specified packages
|
| 12 |
+
RUN micromamba install -n base -c conda-forge -c bioconda -y python=3.10 pip biopython s3fs
|
| 13 |
RUN micromamba install -n base -c conda-forge -c bioconda -y nglview tqdm matplotlib pandas
|
| 14 |
RUN micromamba install -n base -c conda-forge -c bioconda -y openpyxl pyarrow python-box xmlschema seaborn numpy py3Dmol pyranges scipy pyyaml zarr numcodecs
|
| 15 |
RUN micromamba install -n base -c conda-forge -c bioconda -y pybigwig networkx plotly pysam requests seqlogo MOODS urllib3 pyliftover gprofiler-official pyfaidx
|
|
|
|
| 57 |
# Set the working directory where your app resides
|
| 58 |
|
| 59 |
# Command to run the Gradio app automatically
|
| 60 |
+
CMD ["python", "app/main.py", "-p", "7681", "-s", "-u", "s3://2023-get-xf2217/get_demo_test_data", "-d", "/data"]
|
app/main.py
CHANGED
|
@@ -6,67 +6,102 @@ import matplotlib.pyplot as plt
|
|
| 6 |
import pandas as pd
|
| 7 |
import pkg_resources
|
| 8 |
from dash_bio import Clustergram
|
| 9 |
-
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq
|
| 10 |
-
|
| 11 |
-
seq = get_seq()
|
| 12 |
-
genename_to_uniprot = get_genename_to_uniprot()
|
| 13 |
-
lddt = get_lddt()
|
| 14 |
import sys
|
|
|
|
| 15 |
from glob import glob
|
| 16 |
-
|
| 17 |
import numpy as np
|
|
|
|
| 18 |
from atac_rna_data_processing.config.load_config import load_config
|
| 19 |
from atac_rna_data_processing.io.celltype import GETCellType
|
| 20 |
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
|
| 21 |
from proscope.af2 import AFPairseg
|
|
|
|
| 22 |
from proscope.protein import Protein
|
| 23 |
from proscope.viewer import view_pdb_html
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
args = argparse.ArgumentParser()
|
| 26 |
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
|
| 27 |
args.add_argument("-s", "--share", action="store_true", help="Share on network")
|
| 28 |
-
args.add_argument("-
|
|
|
|
| 29 |
args = args.parse_args()
|
| 30 |
-
|
| 31 |
-
# args = args.parse_args(['-p', '7869', '-s', '-d', '/manitou/pmg/users/xf2217/demo_data'])
|
| 32 |
-
gene_pairs = glob(f"{args.data}/structures/causal/*")
|
| 33 |
-
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
|
| 34 |
GET_CONFIG = load_config(
|
| 35 |
-
"/
|
| 36 |
)
|
| 37 |
GET_CONFIG.celltype.jacob = True
|
| 38 |
GET_CONFIG.celltype.num_cls = 2
|
| 39 |
GET_CONFIG.celltype.input = True
|
| 40 |
GET_CONFIG.celltype.embed = True
|
| 41 |
-
GET_CONFIG.celltype.data_dir = (
|
| 42 |
-
"/manitou/pmg/users/xf2217/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
|
| 43 |
-
)
|
| 44 |
-
GET_CONFIG.celltype.interpret_dir = (
|
| 45 |
-
"/manitou/pmg/users/xf2217/Interpretation_all_hg38_allembed_v4_natac/"
|
| 46 |
-
)
|
| 47 |
-
GET_CONFIG.motif_dir = "/manitou/pmg/users/xf2217/interpret_natac/motif-clustering"
|
| 48 |
-
motif = NrMotifV1.load_from_pickle(
|
| 49 |
-
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
|
| 50 |
-
GET_CONFIG.motif_dir,
|
| 51 |
-
)
|
| 52 |
-
cell_type_annot = pd.read_csv(
|
| 53 |
-
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
| 54 |
-
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
| 55 |
-
)
|
| 56 |
-
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
| 57 |
-
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
| 58 |
-
avaliable_celltypes = sorted(
|
| 59 |
-
[
|
| 60 |
-
cell_type_id_to_name[f.split("/")[-1]]
|
| 61 |
-
for f in glob(GET_CONFIG.celltype.interpret_dir + "*")
|
| 62 |
-
]
|
| 63 |
-
)
|
| 64 |
plt.rcParams["figure.dpi"] = 100
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
def visualize_AF2(tf_pair, a):
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
if not os.path.exists(strcture_dir):
|
| 71 |
gr.ErrorText("No such gene pair")
|
| 72 |
|
|
@@ -185,7 +220,7 @@ This section enables you to select different cell types and generates a plot tha
|
|
| 185 |
"""
|
| 186 |
)
|
| 187 |
celltype_name = gr.Dropdown(
|
| 188 |
-
label="Cell Type", choices=
|
| 189 |
)
|
| 190 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
| 191 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
import pkg_resources
|
| 8 |
from dash_bio import Clustergram
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
import sys
|
| 10 |
+
import s3fs
|
| 11 |
from glob import glob
|
|
|
|
| 12 |
import numpy as np
|
| 13 |
+
|
| 14 |
from atac_rna_data_processing.config.load_config import load_config
|
| 15 |
from atac_rna_data_processing.io.celltype import GETCellType
|
| 16 |
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
|
| 17 |
from proscope.af2 import AFPairseg
|
| 18 |
+
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq
|
| 19 |
from proscope.protein import Protein
|
| 20 |
from proscope.viewer import view_pdb_html
|
| 21 |
|
| 22 |
+
|
| 23 |
+
seq = get_seq()
|
| 24 |
+
genename_to_uniprot = get_genename_to_uniprot()
|
| 25 |
+
lddt = get_lddt()
|
| 26 |
+
|
| 27 |
args = argparse.ArgumentParser()
|
| 28 |
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
|
| 29 |
args.add_argument("-s", "--share", action="store_true", help="Share on network")
|
| 30 |
+
args.add_argument("-u", "--s3_uri", type=str, default=None, help="Path to demo S3 bucket")
|
| 31 |
+
args.add_argument("-d", "--data", type=str, default=None, help="Data directory")
|
| 32 |
args = args.parse_args()
|
| 33 |
+
|
|
|
|
|
|
|
|
|
|
| 34 |
GET_CONFIG = load_config(
|
| 35 |
+
"/app/modules/atac_rna_data_processing/atac_rna_data_processing/config/GET"
|
| 36 |
)
|
| 37 |
GET_CONFIG.celltype.jacob = True
|
| 38 |
GET_CONFIG.celltype.num_cls = 2
|
| 39 |
GET_CONFIG.celltype.input = True
|
| 40 |
GET_CONFIG.celltype.embed = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
plt.rcParams["figure.dpi"] = 100
|
| 42 |
|
| 43 |
+
if args.s3_uri: # Use S3 path if exists
|
| 44 |
+
GET_CONFIG.s3_uri = args.s3_uri
|
| 45 |
+
s3 = s3fs.S3FileSystem()
|
| 46 |
+
GET_CONFIG.celltype.data_dir = (
|
| 47 |
+
f"{args.s3_uri}/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
|
| 48 |
+
)
|
| 49 |
+
GET_CONFIG.celltype.interpret_dir = (
|
| 50 |
+
f"{args.s3_uri}/Interpretation_all_hg38_allembed_v4_natac/"
|
| 51 |
+
)
|
| 52 |
+
GET_CONFIG.motif_dir = f"{args.s3_uri}/interpret_natac/motif-clustering"
|
| 53 |
+
cell_type_annot = pd.read_csv(
|
| 54 |
+
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
| 55 |
+
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
| 56 |
+
)
|
| 57 |
+
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
| 58 |
+
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
| 59 |
+
available_celltypes = sorted(
|
| 60 |
+
[
|
| 61 |
+
cell_type_id_to_name[f.split("/")[-1]]
|
| 62 |
+
for f in s3.glob(GET_CONFIG.celltype.interpret_dir + "*")
|
| 63 |
+
]
|
| 64 |
+
)
|
| 65 |
+
gene_pairs = s3.glob(f"{args.s3_uri}/structures/causal/*")
|
| 66 |
+
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
|
| 67 |
+
motif = NrMotifV1.load_from_pickle(
|
| 68 |
+
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
|
| 69 |
+
GET_CONFIG.motif_dir,
|
| 70 |
+
)
|
| 71 |
+
else: # Run with local data
|
| 72 |
+
GET_CONFIG.celltype.data_dir = (
|
| 73 |
+
f"{args.data}/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
|
| 74 |
+
)
|
| 75 |
+
GET_CONFIG.celltype.interpret_dir = (
|
| 76 |
+
f"{args.data}/Interpretation_all_hg38_allembed_v4_natac/"
|
| 77 |
+
)
|
| 78 |
+
GET_CONFIG.motif_dir = f"{args.data}/interpret_natac/motif-clustering"
|
| 79 |
+
cell_type_annot = pd.read_csv(
|
| 80 |
+
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
|
| 81 |
+
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
|
| 82 |
+
)
|
| 83 |
+
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
|
| 84 |
+
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
|
| 85 |
+
available_celltypes = sorted(
|
| 86 |
+
[
|
| 87 |
+
cell_type_id_to_name[f.split("/")[-1]]
|
| 88 |
+
for f in glob(GET_CONFIG.celltype.interpret_dir + "*")
|
| 89 |
+
]
|
| 90 |
+
)
|
| 91 |
+
gene_pairs = glob(f"{args.data}/structures/causal/*")
|
| 92 |
+
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
|
| 93 |
+
motif = NrMotifV1.load_from_pickle(
|
| 94 |
+
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
|
| 95 |
+
GET_CONFIG.motif_dir,
|
| 96 |
+
)
|
| 97 |
|
| 98 |
def visualize_AF2(tf_pair, a):
|
| 99 |
+
if args.s3_uri:
|
| 100 |
+
strcture_dir = f"{args.s3_uri}/structures/causal/{tf_pair}"
|
| 101 |
+
fasta_dir = f"{args.s3_uri}/sequences/causal/{tf_pair}"
|
| 102 |
+
else:
|
| 103 |
+
strcture_dir = f"{args.data}/structures/causal/{tf_pair}"
|
| 104 |
+
fasta_dir = f"{args.data}/sequences/causal/{tf_pair}"
|
| 105 |
if not os.path.exists(strcture_dir):
|
| 106 |
gr.ErrorText("No such gene pair")
|
| 107 |
|
|
|
|
| 220 |
"""
|
| 221 |
)
|
| 222 |
celltype_name = gr.Dropdown(
|
| 223 |
+
label="Cell Type", choices=available_celltypes, value='Fetal Astrocyte 1'
|
| 224 |
)
|
| 225 |
celltype_btn = gr.Button(value="Load & plot gene expression")
|
| 226 |
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
|