geyik2 commited on
Commit
578ab62
·
verified ·
1 Parent(s): ef6942c

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -308
app.py DELETED
@@ -1,308 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from gradio_litmodel3d import LitModel3D
4
- import os
5
- import shutil
6
- import random
7
- import uuid
8
- from datetime import datetime
9
- from diffusers import DiffusionPipeline
10
-
11
- os.environ['SPCONV_ALGO'] = 'native'
12
- from typing import *
13
- import torch
14
- import numpy as np
15
- import imageio
16
- from easydict import EasyDict as edict
17
- from PIL import Image
18
- from trellis.pipelines import TrellisImageTo3DPipeline
19
- from trellis.representations import Gaussian, MeshExtractResult
20
- from trellis.utils import render_utils, postprocessing_utils
21
-
22
- NUM_INFERENCE_STEPS = 8
23
-
24
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
25
- # Constants
26
- MAX_SEED = np.iinfo(np.int32).max
27
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
28
- os.makedirs(TMP_DIR, exist_ok=True)
29
-
30
- # Create permanent storage directory for Flux generated images
31
- SAVE_DIR = "saved_images"
32
- if not os.path.exists(SAVE_DIR):
33
- os.makedirs(SAVE_DIR, exist_ok=True)
34
-
35
- def start_session(req: gr.Request):
36
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
37
- os.makedirs(user_dir, exist_ok=True)
38
-
39
- def end_session(req: gr.Request):
40
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
41
- shutil.rmtree(user_dir)
42
-
43
- def preprocess_image(image: Image.Image) -> Image.Image:
44
- processed_image = trellis_pipeline.preprocess_image(image)
45
- return processed_image
46
-
47
- def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
48
- return {
49
- 'gaussian': {
50
- **gs.init_params,
51
- '_xyz': gs._xyz.cpu().numpy(),
52
- '_features_dc': gs._features_dc.cpu().numpy(),
53
- '_scaling': gs._scaling.cpu().numpy(),
54
- '_rotation': gs._rotation.cpu().numpy(),
55
- '_opacity': gs._opacity.cpu().numpy(),
56
- },
57
- 'mesh': {
58
- 'vertices': mesh.vertices.cpu().numpy(),
59
- 'faces': mesh.faces.cpu().numpy(),
60
- },
61
- }
62
-
63
- def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
64
- gs = Gaussian(
65
- aabb=state['gaussian']['aabb'],
66
- sh_degree=state['gaussian']['sh_degree'],
67
- mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
68
- scaling_bias=state['gaussian']['scaling_bias'],
69
- opacity_bias=state['gaussian']['opacity_bias'],
70
- scaling_activation=state['gaussian']['scaling_activation'],
71
- )
72
- gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
73
- gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
74
- gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
75
- gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
76
- gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
77
-
78
- mesh = edict(
79
- vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
80
- faces=torch.tensor(state['mesh']['faces'], device='cuda'),
81
- )
82
-
83
- return gs, mesh
84
-
85
- def get_seed(randomize_seed: bool, seed: int) -> int:
86
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
87
-
88
- @spaces.GPU
89
- def generate_flux_image(
90
- prompt: str,
91
- seed: int,
92
- randomize_seed: bool,
93
- width: int,
94
- height: int,
95
- guidance_scale: float,
96
- progress: gr.Progress = gr.Progress(track_tqdm=True),
97
- ) -> Image.Image:
98
- """Generate image using Flux pipeline"""
99
- if randomize_seed:
100
- seed = random.randint(0, MAX_SEED)
101
- generator = torch.Generator(device=device).manual_seed(seed)
102
- prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
103
- image = flux_pipeline(
104
- prompt=prompt,
105
- guidance_scale=guidance_scale,
106
- num_inference_steps=NUM_INFERENCE_STEPS,
107
- width=width,
108
- height=height,
109
- generator=generator,
110
- ).images[0]
111
-
112
- # Save the generated image
113
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
114
- unique_id = str(uuid.uuid4())[:8]
115
- filename = f"{timestamp}_{unique_id}.png"
116
- filepath = os.path.join(SAVE_DIR, filename)
117
- image.save(filepath)
118
-
119
- return image
120
-
121
- @spaces.GPU
122
- def image_to_3d(
123
- image: Image.Image,
124
- seed: int,
125
- ss_guidance_strength: float,
126
- ss_sampling_steps: int,
127
- slat_guidance_strength: float,
128
- slat_sampling_steps: int,
129
- req: gr.Request,
130
- ) -> Tuple[dict, str]:
131
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
132
- outputs = trellis_pipeline.run(
133
- image,
134
- seed=seed,
135
- formats=["gaussian", "mesh"],
136
- preprocess_image=False,
137
- sparse_structure_sampler_params={
138
- "steps": ss_sampling_steps,
139
- "cfg_strength": ss_guidance_strength,
140
- },
141
- slat_sampler_params={
142
- "steps": slat_sampling_steps,
143
- "cfg_strength": slat_guidance_strength,
144
- },
145
- )
146
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
147
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
148
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
149
- video_path = os.path.join(user_dir, 'sample.mp4')
150
- imageio.mimsave(video_path, video, fps=15)
151
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
152
- torch.cuda.empty_cache()
153
- return state, video_path
154
-
155
- @spaces.GPU(duration=90)
156
- def extract_glb(
157
- state: dict,
158
- mesh_simplify: float,
159
- texture_size: int,
160
- req: gr.Request,
161
- ) -> Tuple[str, str]:
162
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
163
- gs, mesh = unpack_state(state)
164
- glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
165
- glb_path = os.path.join(user_dir, 'sample.glb')
166
- glb.export(glb_path)
167
- torch.cuda.empty_cache()
168
- return glb_path, glb_path
169
-
170
- @spaces.GPU
171
- def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
172
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
173
- gs, _ = unpack_state(state)
174
- gaussian_path = os.path.join(user_dir, 'sample.ply')
175
- gs.save_ply(gaussian_path)
176
- torch.cuda.empty_cache()
177
- return gaussian_path, gaussian_path
178
-
179
- # Gradio Interface
180
- with gr.Blocks() as demo:
181
- gr.Markdown("""
182
- ## Game Asset Generation to 3D with FLUX and TRELLIS
183
- * Enter a prompt to generate a game asset image, then convert it to 3D
184
- * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
185
- * [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
186
- * [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
187
- """)
188
-
189
- with gr.Row():
190
- with gr.Column():
191
- # Flux image generation inputs
192
- prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
193
-
194
- with gr.Accordion("Generation Settings", open=False):
195
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
196
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
197
- with gr.Row():
198
- width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
199
- height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
200
- with gr.Row():
201
- guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
202
- # num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
203
-
204
- with gr.Accordion("3D Generation Settings", open=False):
205
- gr.Markdown("Stage 1: Sparse Structure Generation")
206
- with gr.Row():
207
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
208
- ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
209
- gr.Markdown("Stage 2: Structured Latent Generation")
210
- with gr.Row():
211
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
212
- slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
213
-
214
- generate_btn = gr.Button("Generate")
215
-
216
- with gr.Accordion("GLB Extraction Settings", open=False):
217
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
218
- texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
219
-
220
- with gr.Row():
221
- extract_glb_btn = gr.Button("Extract GLB", interactive=False)
222
- extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
223
-
224
- with gr.Column():
225
- generated_image = gr.Image(label="Generated Asset", type="pil")
226
-
227
- with gr.Column():
228
-
229
- video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
230
- model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
231
-
232
- with gr.Row():
233
- download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
234
- download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
235
-
236
- output_buf = gr.State()
237
-
238
- # Event handlers
239
- demo.load(start_session)
240
- demo.unload(end_session)
241
-
242
- generate_btn.click(
243
- generate_flux_image,
244
- inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
245
- outputs=[generated_image],
246
- ).then(
247
- image_to_3d,
248
- inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
249
- outputs=[output_buf, video_output],
250
- ).then(
251
- lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
252
- outputs=[extract_glb_btn, extract_gs_btn],
253
- )
254
-
255
- extract_glb_btn.click(
256
- extract_glb,
257
- inputs=[output_buf, mesh_simplify, texture_size],
258
- outputs=[model_output, download_glb],
259
- ).then(
260
- lambda: gr.Button(interactive=True),
261
- outputs=[download_glb],
262
- )
263
-
264
- extract_gs_btn.click(
265
- extract_gaussian,
266
- inputs=[output_buf],
267
- outputs=[model_output, download_gs],
268
- ).then(
269
- lambda: gr.Button(interactive=True),
270
- outputs=[download_gs],
271
- )
272
-
273
- model_output.clear(
274
- lambda: gr.Button(interactive=False),
275
- outputs=[download_glb],
276
- )
277
-
278
- # Initialize both pipelines
279
- if __name__ == "__main__":
280
- from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
281
- from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
282
-
283
- # Initialize Flux pipeline
284
- device = "cuda" if torch.cuda.is_available() else "cpu"
285
- huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
286
-
287
- dtype = torch.bfloat16
288
- file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
289
- file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
290
- single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
291
- quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
292
- text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
293
- if ".gguf" in file_url:
294
- transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
295
- else:
296
- quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
297
- transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
298
- flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
299
- flux_pipeline.to("cuda")
300
- # Initialize Trellis pipeline
301
- trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
302
- trellis_pipeline.cuda()
303
- try:
304
- trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
305
- except:
306
- pass
307
-
308
- demo.launch()