Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -1,504 +1,412 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import os
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
import torch
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from PIL import Image
|
8 |
-
import tempfile
|
9 |
-
import io
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
model
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
if
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
depth
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
depth_colored = (depth * 255).astype(np.uint8)
|
120 |
-
depth_colored =
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()
|
283 |
-
.
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
label="
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
return result, None, gr.update(visible=True), download_update
|
413 |
-
else: # Use Camera
|
414 |
-
result, download_update = predict_depth(camera_img, colormap)
|
415 |
-
return result, None, gr.update(visible=True), download_update
|
416 |
-
|
417 |
-
# Separate image and video examples
|
418 |
-
image_examples = []
|
419 |
-
video_examples = []
|
420 |
-
if os.path.exists("toyset"):
|
421 |
-
for img_file in ["1.png", "2.png", "good.png"]:
|
422 |
-
if os.path.exists(f"toyset/{img_file}"):
|
423 |
-
image_examples.append([f"toyset/{img_file}", "Spectral"])
|
424 |
-
|
425 |
-
for vid_file in ["fog_2_processed_1s-6s_1.0x.mp4", "snow_processed_1s-6s_1.0x.mp4"]:
|
426 |
-
if os.path.exists(f"toyset/{vid_file}"):
|
427 |
-
video_examples.append([f"toyset/{vid_file}", "Spectral"])
|
428 |
-
|
429 |
-
# Function to handle video example selection and auto-switch mode
|
430 |
-
def handle_video_example(video_path, colormap):
|
431 |
-
# Auto-switch to video mode and return the necessary updates
|
432 |
-
return (
|
433 |
-
"Upload Video", # input_source
|
434 |
-
gr.update(visible=False), # upload_image
|
435 |
-
gr.update(visible=True, value=video_path), # upload_file
|
436 |
-
gr.update(visible=False) # camera_image
|
437 |
-
)
|
438 |
-
|
439 |
-
# Function to handle image example selection and auto-switch mode
|
440 |
-
def handle_image_example(image, colormap):
|
441 |
-
# Auto-switch to image mode and process the image
|
442 |
-
result = predict_depth(image, colormap)
|
443 |
-
output_image = result[0] if result[0] is not None else None
|
444 |
-
return (
|
445 |
-
"Upload Image", # input_source
|
446 |
-
gr.update(visible=True, value=image), # upload_image
|
447 |
-
gr.update(visible=False), # upload_file
|
448 |
-
gr.update(visible=False), # camera_image
|
449 |
-
output_image # output_image
|
450 |
-
)
|
451 |
-
|
452 |
-
if image_examples:
|
453 |
-
gr.Examples(
|
454 |
-
examples=image_examples,
|
455 |
-
inputs=[upload_image, colormap_choice],
|
456 |
-
outputs=[input_source, upload_image, upload_file, camera_image, output_image],
|
457 |
-
fn=handle_image_example,
|
458 |
-
cache_examples=False,
|
459 |
-
label="Try these example images"
|
460 |
-
)
|
461 |
-
|
462 |
-
if video_examples:
|
463 |
-
gr.Examples(
|
464 |
-
examples=video_examples,
|
465 |
-
inputs=[upload_file, colormap_choice],
|
466 |
-
outputs=[input_source, upload_image, upload_file, camera_image],
|
467 |
-
fn=handle_video_example,
|
468 |
-
cache_examples=False,
|
469 |
-
label="Try these example videos"
|
470 |
-
)
|
471 |
-
|
472 |
-
submit_btn.click(
|
473 |
-
fn=handle_prediction,
|
474 |
-
inputs=[input_source, upload_image, upload_file, camera_image, colormap_choice],
|
475 |
-
outputs=[output_image, output_file, output_image, download_btn],
|
476 |
-
show_progress=True
|
477 |
-
)
|
478 |
-
|
479 |
-
gr.Markdown("""
|
480 |
-
## π Colormap Description
|
481 |
-
- **Spectral**: Rainbow spectrum, with clear contrast between near and far
|
482 |
-
- **Inferno**: Fire spectrum, warm tones
|
483 |
-
- **Gray**: Classic grayscale depth representation
|
484 |
-
|
485 |
-
## π· Camera Usage Tips
|
486 |
-
- Ensure camera access is allowed when prompted
|
487 |
-
- Click the camera button to capture the current frame
|
488 |
-
- The captured image will be used as input for depth estimation
|
489 |
-
|
490 |
-
## π¬ Video Processing Tips
|
491 |
-
- Supports multiple video formats (MP4, AVI, MOV, etc.)
|
492 |
-
- Video processing may take some time, please be patient
|
493 |
-
- Processing progress will be displayed in real-time
|
494 |
-
- The output video will maintain the same frame rate as the input
|
495 |
-
""")
|
496 |
-
|
497 |
-
|
498 |
-
if __name__ == "__main__":
|
499 |
-
demo.launch(
|
500 |
-
server_name="0.0.0.0",
|
501 |
-
server_port=7860,
|
502 |
-
share=False,
|
503 |
-
show_error=True
|
504 |
)
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from PIL import Image
|
8 |
+
import tempfile
|
9 |
+
import io
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from depth_anything.dpt import DepthAnything_AC
|
13 |
+
|
14 |
+
|
15 |
+
def normalize_depth(disparity_tensor):
|
16 |
+
"""Standard normalization method to convert disparity to depth"""
|
17 |
+
eps = 1e-6
|
18 |
+
disparity_min = disparity_tensor.min()
|
19 |
+
disparity_max = disparity_tensor.max()
|
20 |
+
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
|
21 |
+
return normalized_disparity
|
22 |
+
|
23 |
+
|
24 |
+
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
|
25 |
+
"""Load trained depth estimation model"""
|
26 |
+
model_configs = {
|
27 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
|
28 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
|
29 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
|
30 |
+
}
|
31 |
+
|
32 |
+
model = DepthAnything_AC(model_configs[encoder])
|
33 |
+
|
34 |
+
if os.path.exists(model_path):
|
35 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
36 |
+
model.load_state_dict(checkpoint, strict=False)
|
37 |
+
else:
|
38 |
+
print(f"Warning: Model file {model_path} not found")
|
39 |
+
|
40 |
+
model.eval()
|
41 |
+
if torch.cuda.is_available():
|
42 |
+
model.cuda()
|
43 |
+
|
44 |
+
return model
|
45 |
+
|
46 |
+
|
47 |
+
def preprocess_image(image, target_size=518):
|
48 |
+
"""Preprocess input image"""
|
49 |
+
if isinstance(image, Image.Image):
|
50 |
+
image = np.array(image)
|
51 |
+
|
52 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
53 |
+
pass
|
54 |
+
elif len(image.shape) == 3 and image.shape[2] == 4:
|
55 |
+
image = image[:, :, :3]
|
56 |
+
|
57 |
+
image = image.astype(np.float32) / 255.0
|
58 |
+
h, w = image.shape[:2]
|
59 |
+
scale = target_size / min(h, w)
|
60 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
61 |
+
|
62 |
+
new_h = ((new_h + 13) // 14) * 14
|
63 |
+
new_w = ((new_w + 13) // 14) * 14
|
64 |
+
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
65 |
+
|
66 |
+
mean = np.array([0.485, 0.456, 0.406])
|
67 |
+
std = np.array([0.229, 0.224, 0.225])
|
68 |
+
image = (image - mean) / std
|
69 |
+
|
70 |
+
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
|
71 |
+
image = image.unsqueeze(0)
|
72 |
+
|
73 |
+
return image, (h, w)
|
74 |
+
|
75 |
+
|
76 |
+
def preprocess_image_from_array(image_array, target_size=518):
|
77 |
+
"""Preprocess input image from numpy array (for video frames)"""
|
78 |
+
if len(image_array.shape) == 3 and image_array.shape[2] == 3:
|
79 |
+
# Convert BGR to RGB if needed
|
80 |
+
image = cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
|
81 |
+
else:
|
82 |
+
image = image_array.astype(np.float32) / 255.0
|
83 |
+
|
84 |
+
h, w = image.shape[:2]
|
85 |
+
scale = target_size / min(h, w)
|
86 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
87 |
+
|
88 |
+
new_h = ((new_h + 13) // 14) * 14
|
89 |
+
new_w = ((new_w + 13) // 14) * 14
|
90 |
+
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
91 |
+
|
92 |
+
mean = np.array([0.485, 0.456, 0.406])
|
93 |
+
std = np.array([0.229, 0.224, 0.225])
|
94 |
+
image = (image - mean) / std
|
95 |
+
|
96 |
+
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
|
97 |
+
image = image.unsqueeze(0)
|
98 |
+
|
99 |
+
return image, (h, w)
|
100 |
+
|
101 |
+
|
102 |
+
def postprocess_depth(depth_tensor, original_size):
|
103 |
+
"""Post-process depth map"""
|
104 |
+
if depth_tensor.dim() == 3:
|
105 |
+
depth_tensor = depth_tensor.unsqueeze(1)
|
106 |
+
elif depth_tensor.dim() == 2:
|
107 |
+
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
|
108 |
+
|
109 |
+
h, w = original_size
|
110 |
+
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
|
111 |
+
depth = depth.squeeze().cpu().numpy()
|
112 |
+
|
113 |
+
return depth
|
114 |
+
|
115 |
+
|
116 |
+
def create_colored_depth_map(depth, colormap='spectral'):
|
117 |
+
"""Create colored depth map"""
|
118 |
+
if colormap == 'inferno':
|
119 |
+
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
|
120 |
+
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
|
121 |
+
elif colormap == 'spectral':
|
122 |
+
from matplotlib import cm
|
123 |
+
spectral_cmap = cm.get_cmap('Spectral_r')
|
124 |
+
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
|
125 |
+
depth_colored = depth_colored[:, :, :3]
|
126 |
+
else:
|
127 |
+
depth_colored = (depth * 255).astype(np.uint8)
|
128 |
+
depth_colored = np.stack([depth_colored] * 3, axis=2)
|
129 |
+
|
130 |
+
return depth_colored
|
131 |
+
|
132 |
+
|
133 |
+
def is_video_file(filepath):
|
134 |
+
"""Check if the given file is a video file based on its extension"""
|
135 |
+
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
|
136 |
+
_, ext = os.path.splitext(filepath.lower())
|
137 |
+
return ext in video_extensions
|
138 |
+
|
139 |
+
|
140 |
+
print("Loading model...")
|
141 |
+
model = load_model()
|
142 |
+
print("Model loaded successfully!")
|
143 |
+
|
144 |
+
|
145 |
+
def predict_depth(input_image, colormap_choice):
|
146 |
+
"""Main depth prediction function for images"""
|
147 |
+
try:
|
148 |
+
image_tensor, original_size = preprocess_image(input_image)
|
149 |
+
|
150 |
+
if torch.cuda.is_available():
|
151 |
+
image_tensor = image_tensor.cuda()
|
152 |
+
|
153 |
+
with torch.no_grad():
|
154 |
+
prediction = model(image_tensor)
|
155 |
+
disparity_tensor = prediction['out']
|
156 |
+
depth_tensor = normalize_depth(disparity_tensor)
|
157 |
+
|
158 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
159 |
+
|
160 |
+
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
|
161 |
+
|
162 |
+
return Image.fromarray(depth_colored)
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
print(f"Error during image inference: {str(e)}")
|
166 |
+
return None
|
167 |
+
|
168 |
+
|
169 |
+
def predict_video_depth(input_video, colormap_choice, progress=gr.Progress()):
|
170 |
+
"""Main depth prediction function for videos"""
|
171 |
+
if input_video is None:
|
172 |
+
return None
|
173 |
+
|
174 |
+
try:
|
175 |
+
print(f"Starting video processing: {input_video}")
|
176 |
+
|
177 |
+
# Open video file
|
178 |
+
cap = cv2.VideoCapture(input_video)
|
179 |
+
if not cap.isOpened():
|
180 |
+
print(f"Error: Cannot open video file: {input_video}")
|
181 |
+
return None
|
182 |
+
|
183 |
+
# Get video properties
|
184 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
185 |
+
input_fps = cap.get(cv2.CAP_PROP_FPS)
|
186 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
187 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
188 |
+
|
189 |
+
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
|
190 |
+
|
191 |
+
# Create temporary output video file
|
192 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
193 |
+
output_path = tmp_file.name
|
194 |
+
|
195 |
+
# Set video encoder
|
196 |
+
fourcc = cv2.VideoWriter.fourcc(*'mp4v')
|
197 |
+
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
|
198 |
+
|
199 |
+
if not out.isOpened():
|
200 |
+
print(f"Error: Cannot create output video: {output_path}")
|
201 |
+
cap.release()
|
202 |
+
return None
|
203 |
+
|
204 |
+
frame_count = 0
|
205 |
+
|
206 |
+
# Process each frame
|
207 |
+
while True:
|
208 |
+
ret, frame = cap.read()
|
209 |
+
if not ret:
|
210 |
+
break
|
211 |
+
|
212 |
+
frame_count += 1
|
213 |
+
progress_percent = frame_count / total_frames
|
214 |
+
progress(progress_percent, desc=f"Processing frame {frame_count}/{total_frames}")
|
215 |
+
|
216 |
+
try:
|
217 |
+
# Preprocess current frame
|
218 |
+
image_tensor, original_size = preprocess_image_from_array(frame)
|
219 |
+
if torch.cuda.is_available():
|
220 |
+
image_tensor = image_tensor.cuda()
|
221 |
+
|
222 |
+
# Perform depth estimation
|
223 |
+
with torch.no_grad():
|
224 |
+
prediction = model(image_tensor)
|
225 |
+
disparity_tensor = prediction['out']
|
226 |
+
depth_tensor = normalize_depth(disparity_tensor)
|
227 |
+
|
228 |
+
# Postprocess depth map
|
229 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
230 |
+
|
231 |
+
# Handle failed processing
|
232 |
+
if depth is None:
|
233 |
+
if depth_tensor.dim() == 1:
|
234 |
+
h, w = original_size
|
235 |
+
expected_size = h * w
|
236 |
+
if depth_tensor.shape[0] == expected_size:
|
237 |
+
depth_tensor = depth_tensor.view(1, 1, h, w)
|
238 |
+
else:
|
239 |
+
import math
|
240 |
+
side_length = int(math.sqrt(depth_tensor.shape[0]))
|
241 |
+
if side_length * side_length == depth_tensor.shape[0]:
|
242 |
+
depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
|
243 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
244 |
+
|
245 |
+
# Generate colored depth map
|
246 |
+
if depth is None:
|
247 |
+
print(f"Warning: Failed to process frame {frame_count}, using black frame")
|
248 |
+
depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
|
249 |
+
else:
|
250 |
+
if colormap_choice.lower() == 'inferno':
|
251 |
+
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
|
252 |
+
elif colormap_choice.lower() == 'spectral':
|
253 |
+
from matplotlib import cm
|
254 |
+
spectral_cmap = cm.get_cmap('Spectral_r')
|
255 |
+
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
|
256 |
+
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGBA2BGR)
|
257 |
+
else: # gray
|
258 |
+
depth_frame = (depth * 255).astype(np.uint8)
|
259 |
+
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
|
260 |
+
|
261 |
+
# Write to output video
|
262 |
+
out.write(depth_frame)
|
263 |
+
|
264 |
+
except Exception as e:
|
265 |
+
print(f"Error processing frame {frame_count}: {str(e)}")
|
266 |
+
# Write black frame
|
267 |
+
black_frame = np.zeros((height, width, 3), dtype=np.uint8)
|
268 |
+
out.write(black_frame)
|
269 |
+
|
270 |
+
# Release resources
|
271 |
+
cap.release()
|
272 |
+
out.release()
|
273 |
+
|
274 |
+
print(f"Video processing completed! Output saved to: {output_path}")
|
275 |
+
return output_path
|
276 |
+
|
277 |
+
except Exception as e:
|
278 |
+
print(f"Error during video inference: {str(e)}")
|
279 |
+
return None
|
280 |
+
|
281 |
+
|
282 |
+
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
|
283 |
+
gr.Markdown("""
|
284 |
+
# π Depth Anything AC - Depth Estimation Demo
|
285 |
+
|
286 |
+
Upload an image or video and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the scene.
|
287 |
+
|
288 |
+
## How to Use
|
289 |
+
1. Choose image or video tab
|
290 |
+
2. Upload your file
|
291 |
+
3. Select your preferred colormap style
|
292 |
+
4. Click the "Generate Depth Map" button
|
293 |
+
5. View results and download
|
294 |
+
""")
|
295 |
+
|
296 |
+
with gr.Tabs():
|
297 |
+
# Image processing tab
|
298 |
+
with gr.TabItem("π· Image Depth Estimation"):
|
299 |
+
with gr.Row():
|
300 |
+
with gr.Column():
|
301 |
+
input_image = gr.Image(
|
302 |
+
label="Upload Image",
|
303 |
+
type="pil",
|
304 |
+
height=400
|
305 |
+
)
|
306 |
+
|
307 |
+
image_colormap_choice = gr.Dropdown(
|
308 |
+
choices=["Spectral", "Inferno", "Gray"],
|
309 |
+
value="Spectral",
|
310 |
+
label="Colormap"
|
311 |
+
)
|
312 |
+
|
313 |
+
image_submit_btn = gr.Button(
|
314 |
+
"π― Generate Image Depth Map",
|
315 |
+
variant="primary",
|
316 |
+
size="lg"
|
317 |
+
)
|
318 |
+
|
319 |
+
with gr.Column():
|
320 |
+
output_image = gr.Image(
|
321 |
+
label="Depth Map Result",
|
322 |
+
type="pil",
|
323 |
+
height=400
|
324 |
+
)
|
325 |
+
|
326 |
+
gr.Examples(
|
327 |
+
examples=[
|
328 |
+
["toyset/1.png", "Spectral"],
|
329 |
+
["toyset/2.png", "Spectral"],
|
330 |
+
["toyset/good.png", "Spectral"],
|
331 |
+
] if os.path.exists("toyset") else [],
|
332 |
+
inputs=[input_image, image_colormap_choice],
|
333 |
+
outputs=output_image,
|
334 |
+
fn=predict_depth,
|
335 |
+
cache_examples=False,
|
336 |
+
label="Try these example images"
|
337 |
+
)
|
338 |
+
|
339 |
+
# Video processing tab
|
340 |
+
with gr.TabItem("π¬ Video Depth Estimation"):
|
341 |
+
with gr.Row():
|
342 |
+
with gr.Column():
|
343 |
+
input_video = gr.Video(
|
344 |
+
label="Upload Video",
|
345 |
+
height=400
|
346 |
+
)
|
347 |
+
|
348 |
+
video_colormap_choice = gr.Dropdown(
|
349 |
+
choices=["Spectral", "Inferno", "Gray"],
|
350 |
+
value="Spectral",
|
351 |
+
label="Colormap"
|
352 |
+
)
|
353 |
+
|
354 |
+
video_submit_btn = gr.Button(
|
355 |
+
"π― Generate Video Depth Map",
|
356 |
+
variant="primary",
|
357 |
+
size="lg"
|
358 |
+
)
|
359 |
+
|
360 |
+
with gr.Column():
|
361 |
+
output_video = gr.Video(
|
362 |
+
label="Depth Map Video Result",
|
363 |
+
height=400
|
364 |
+
)
|
365 |
+
|
366 |
+
gr.Examples(
|
367 |
+
examples=[
|
368 |
+
["toyset/fog.mp4", "Spectral"],
|
369 |
+
["toyset/snow.mp4", "Spectral"],
|
370 |
+
] if os.path.exists("toyset/fog.mp4") and os.path.exists("toyset/snow.mp4") else [],
|
371 |
+
inputs=[input_video, video_colormap_choice],
|
372 |
+
outputs=output_video,
|
373 |
+
fn=predict_video_depth,
|
374 |
+
cache_examples=False,
|
375 |
+
label="Try these example videos"
|
376 |
+
)
|
377 |
+
|
378 |
+
# Event bindings
|
379 |
+
image_submit_btn.click(
|
380 |
+
fn=predict_depth,
|
381 |
+
inputs=[input_image, image_colormap_choice],
|
382 |
+
outputs=output_image,
|
383 |
+
show_progress=True
|
384 |
+
)
|
385 |
+
|
386 |
+
video_submit_btn.click(
|
387 |
+
fn=predict_video_depth,
|
388 |
+
inputs=[input_video, video_colormap_choice],
|
389 |
+
outputs=output_video,
|
390 |
+
show_progress=True
|
391 |
+
)
|
392 |
+
|
393 |
+
gr.Markdown("""
|
394 |
+
## π Notes
|
395 |
+
- **Spectral**: Rainbow spectrum with distinct near-far contrast
|
396 |
+
- **Inferno**: Flame spectrum with warm tones
|
397 |
+
- **Gray**: Grayscale with classic effect
|
398 |
+
|
399 |
+
## π‘ Tips
|
400 |
+
- Image processing is fast, suitable for quick preview of single images
|
401 |
+
- Video processing may take longer time, please be patient
|
402 |
+
- GPU is recommended for faster processing speed
|
403 |
+
""")
|
404 |
+
|
405 |
+
|
406 |
+
if __name__ == "__main__":
|
407 |
+
demo.launch(
|
408 |
+
server_name="0.0.0.0",
|
409 |
+
server_port=7860,
|
410 |
+
share=False,
|
411 |
+
show_error=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
412 |
)
|