Spaces:
Running
Running
upload models
Browse files- .gitattributes +6 -0
- .gitignore +2 -0
- app.py +209 -0
- depth_anything/__pycache__/dpt.cpython-39.pyc +0 -0
- depth_anything/dinov2.py +415 -0
- depth_anything/dinov2_layers/__init__.py +11 -0
- depth_anything/dinov2_layers/attention.py +83 -0
- depth_anything/dinov2_layers/block.py +252 -0
- depth_anything/dinov2_layers/drop_path.py +35 -0
- depth_anything/dinov2_layers/layer_scale.py +28 -0
- depth_anything/dinov2_layers/mlp.py +41 -0
- depth_anything/dinov2_layers/patch_embed.py +89 -0
- depth_anything/dinov2_layers/swiglu_ffn.py +63 -0
- depth_anything/dpt.py +268 -0
- depth_anything/dpt_teacher.py +173 -0
- depth_anything/util/__pycache__/blocksv2.cpython-39.pyc +0 -0
- depth_anything/util/__pycache__/transform.cpython-39.pyc +0 -0
- depth_anything/util/blocksv1.py +153 -0
- depth_anything/util/blocksv2.py +148 -0
- depth_anything/util/dformerv2.py +622 -0
- depth_anything/util/priorgenerate.py +103 -0
- depth_anything/util/transform.py +248 -0
- requirements.txt +16 -0
- toyset/1.png +3 -0
- toyset/2.png +3 -0
- toyset/3.png +3 -0
- toyset/4.png +3 -0
- toyset/5.png +3 -0
- toyset/good.png +3 -0
- util/__pycache__/dist_helper.cpython-39.pyc +0 -0
- util/__pycache__/utils.cpython-39.pyc +0 -0
- util/__pycache__/visualize_utils.cpython-39.pyc +0 -0
- util/dist_helper.py +24 -0
- util/utils.py +106 -0
- util/visualize_utils.py +130 -0
.gitattributes
CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
toyset/1.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
toyset/2.png filter=lfs diff=lfs merge=lfs -text
|
38 |
+
toyset/3.png filter=lfs diff=lfs merge=lfs -text
|
39 |
+
toyset/4.png filter=lfs diff=lfs merge=lfs -text
|
40 |
+
toyset/5.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
toyset/good.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
key628.txt
|
2 |
+
key628.txt.pub
|
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from PIL import Image
|
8 |
+
import tempfile
|
9 |
+
import io
|
10 |
+
|
11 |
+
from depth_anything.dpt import DepthAnything_AC
|
12 |
+
|
13 |
+
|
14 |
+
def normalize_depth(disparity_tensor):
|
15 |
+
"""Standard normalization method to convert disparity to depth"""
|
16 |
+
eps = 1e-6
|
17 |
+
disparity_min = disparity_tensor.min()
|
18 |
+
disparity_max = disparity_tensor.max()
|
19 |
+
normalized_disparity = (disparity_tensor - disparity_min) / (disparity_max - disparity_min + eps)
|
20 |
+
return normalized_disparity
|
21 |
+
|
22 |
+
|
23 |
+
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
|
24 |
+
"""Load trained depth estimation model"""
|
25 |
+
model_configs = {
|
26 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024], 'version': 'v2'},
|
27 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768], 'version': 'v2'},
|
28 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384], 'version': 'v2'}
|
29 |
+
}
|
30 |
+
|
31 |
+
model = DepthAnything_AC(model_configs[encoder])
|
32 |
+
|
33 |
+
if os.path.exists(model_path):
|
34 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
35 |
+
model.load_state_dict(checkpoint, strict=False)
|
36 |
+
else:
|
37 |
+
print(f"Warning: Model file {model_path} not found")
|
38 |
+
|
39 |
+
model.eval()
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
model.cuda()
|
42 |
+
|
43 |
+
return model
|
44 |
+
|
45 |
+
|
46 |
+
def preprocess_image(image, target_size=518):
|
47 |
+
"""Preprocess input image"""
|
48 |
+
if isinstance(image, Image.Image):
|
49 |
+
image = np.array(image)
|
50 |
+
|
51 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
52 |
+
pass
|
53 |
+
elif len(image.shape) == 3 and image.shape[2] == 4:
|
54 |
+
image = image[:, :, :3]
|
55 |
+
|
56 |
+
image = image.astype(np.float32) / 255.0
|
57 |
+
h, w = image.shape[:2]
|
58 |
+
scale = target_size / min(h, w)
|
59 |
+
new_h, new_w = int(h * scale), int(w * scale)
|
60 |
+
|
61 |
+
new_h = ((new_h + 13) // 14) * 14
|
62 |
+
new_w = ((new_w + 13) // 14) * 14
|
63 |
+
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
64 |
+
|
65 |
+
mean = np.array([0.485, 0.456, 0.406])
|
66 |
+
std = np.array([0.229, 0.224, 0.225])
|
67 |
+
image = (image - mean) / std
|
68 |
+
|
69 |
+
image = torch.from_numpy(image.transpose(2, 0, 1)).float()
|
70 |
+
image = image.unsqueeze(0)
|
71 |
+
|
72 |
+
return image, (h, w)
|
73 |
+
|
74 |
+
|
75 |
+
def postprocess_depth(depth_tensor, original_size):
|
76 |
+
"""Post-process depth map"""
|
77 |
+
if depth_tensor.dim() == 3:
|
78 |
+
depth_tensor = depth_tensor.unsqueeze(1)
|
79 |
+
elif depth_tensor.dim() == 2:
|
80 |
+
depth_tensor = depth_tensor.unsqueeze(0).unsqueeze(1)
|
81 |
+
|
82 |
+
h, w = original_size
|
83 |
+
depth = F.interpolate(depth_tensor, size=(h, w), mode='bilinear', align_corners=True)
|
84 |
+
depth = depth.squeeze().cpu().numpy()
|
85 |
+
|
86 |
+
return depth
|
87 |
+
|
88 |
+
|
89 |
+
def create_colored_depth_map(depth, colormap='spectral'):
|
90 |
+
"""Create colored depth map"""
|
91 |
+
if colormap == 'inferno':
|
92 |
+
depth_colored = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
|
93 |
+
depth_colored = cv2.cvtColor(depth_colored, cv2.COLOR_BGR2RGB)
|
94 |
+
elif colormap == 'spectral':
|
95 |
+
from matplotlib import cm
|
96 |
+
spectral_cmap = cm.get_cmap('Spectral_r')
|
97 |
+
depth_colored = (spectral_cmap(depth) * 255).astype(np.uint8)
|
98 |
+
depth_colored = depth_colored[:, :, :3]
|
99 |
+
else:
|
100 |
+
depth_colored = (depth * 255).astype(np.uint8)
|
101 |
+
depth_colored = np.stack([depth_colored] * 3, axis=2)
|
102 |
+
|
103 |
+
return depth_colored
|
104 |
+
|
105 |
+
|
106 |
+
print("Loading model...")
|
107 |
+
model = load_model()
|
108 |
+
print("Model loaded successfully!")
|
109 |
+
|
110 |
+
|
111 |
+
def predict_depth(input_image, colormap_choice):
|
112 |
+
"""Main depth prediction function"""
|
113 |
+
try:
|
114 |
+
image_tensor, original_size = preprocess_image(input_image)
|
115 |
+
|
116 |
+
if torch.cuda.is_available():
|
117 |
+
image_tensor = image_tensor.cuda()
|
118 |
+
|
119 |
+
with torch.no_grad():
|
120 |
+
prediction = model(image_tensor)
|
121 |
+
disparity_tensor = prediction['out']
|
122 |
+
depth_tensor = normalize_depth(disparity_tensor)
|
123 |
+
|
124 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
125 |
+
|
126 |
+
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
|
127 |
+
|
128 |
+
return Image.fromarray(depth_colored)
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error during inference: {str(e)}")
|
132 |
+
return None
|
133 |
+
|
134 |
+
|
135 |
+
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
|
136 |
+
gr.Markdown("""
|
137 |
+
# 🌊 Depth Anything AC - Depth Estimation Demo
|
138 |
+
|
139 |
+
Upload an image and AI will generate the corresponding depth map! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
|
140 |
+
|
141 |
+
## How to Use
|
142 |
+
1. Click the upload area to select an image
|
143 |
+
2. Choose your preferred colormap style
|
144 |
+
3. Click the "Generate Depth Map" button
|
145 |
+
4. View the results and download
|
146 |
+
""")
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
input_image = gr.Image(
|
151 |
+
label="Upload Image",
|
152 |
+
type="pil",
|
153 |
+
height=400
|
154 |
+
)
|
155 |
+
|
156 |
+
colormap_choice = gr.Dropdown(
|
157 |
+
choices=["Spectral", "Inferno", "Gray"],
|
158 |
+
value="Spectral",
|
159 |
+
label="Colormap"
|
160 |
+
)
|
161 |
+
|
162 |
+
submit_btn = gr.Button(
|
163 |
+
"🎯 Generate Depth Map",
|
164 |
+
variant="primary",
|
165 |
+
size="lg"
|
166 |
+
)
|
167 |
+
|
168 |
+
with gr.Column():
|
169 |
+
output_image = gr.Image(
|
170 |
+
label="Depth Map Result",
|
171 |
+
type="pil",
|
172 |
+
height=400
|
173 |
+
)
|
174 |
+
|
175 |
+
gr.Examples(
|
176 |
+
examples=[
|
177 |
+
["toyset/1.png", "Spectral"],
|
178 |
+
["toyset/2.png", "Spectral"],
|
179 |
+
["toyset/good.png", "Spectral"],
|
180 |
+
] if os.path.exists("toyset") else [],
|
181 |
+
inputs=[input_image, colormap_choice],
|
182 |
+
outputs=output_image,
|
183 |
+
fn=predict_depth,
|
184 |
+
cache_examples=False,
|
185 |
+
label="Try these example images"
|
186 |
+
)
|
187 |
+
|
188 |
+
submit_btn.click(
|
189 |
+
fn=predict_depth,
|
190 |
+
inputs=[input_image, colormap_choice],
|
191 |
+
outputs=output_image,
|
192 |
+
show_progress=True
|
193 |
+
)
|
194 |
+
|
195 |
+
gr.Markdown("""
|
196 |
+
## 📝 Notes
|
197 |
+
- **Spectral**: Rainbow spectrum with distinct near-far contrast
|
198 |
+
- **Inferno**: Flame spectrum with warm tones
|
199 |
+
- **Gray**: Grayscale with classic effect
|
200 |
+
""")
|
201 |
+
|
202 |
+
|
203 |
+
if __name__ == "__main__":
|
204 |
+
demo.launch(
|
205 |
+
server_name="0.0.0.0",
|
206 |
+
server_port=7860,
|
207 |
+
share=False,
|
208 |
+
show_error=True
|
209 |
+
)
|
depth_anything/__pycache__/dpt.cpython-39.pyc
ADDED
Binary file (8.4 kB). View file
|
|
depth_anything/dinov2.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the Apache License, Version 2.0
|
4 |
+
# found in the LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
# References:
|
7 |
+
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
|
8 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
9 |
+
|
10 |
+
from functools import partial
|
11 |
+
import math
|
12 |
+
import logging
|
13 |
+
from typing import Sequence, Tuple, Union, Callable
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.utils.checkpoint
|
18 |
+
from torch.nn.init import trunc_normal_
|
19 |
+
|
20 |
+
from .dinov2_layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.getLogger("dinov2")
|
24 |
+
|
25 |
+
|
26 |
+
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
|
27 |
+
if not depth_first and include_root:
|
28 |
+
fn(module=module, name=name)
|
29 |
+
for child_name, child_module in module.named_children():
|
30 |
+
child_name = ".".join((name, child_name)) if name else child_name
|
31 |
+
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
|
32 |
+
if depth_first and include_root:
|
33 |
+
fn(module=module, name=name)
|
34 |
+
return module
|
35 |
+
|
36 |
+
|
37 |
+
class BlockChunk(nn.ModuleList):
|
38 |
+
def forward(self, x):
|
39 |
+
for b in self:
|
40 |
+
x = b(x)
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
44 |
+
class DinoVisionTransformer(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
img_size=224,
|
48 |
+
patch_size=16,
|
49 |
+
in_chans=3,
|
50 |
+
embed_dim=768,
|
51 |
+
depth=12,
|
52 |
+
num_heads=12,
|
53 |
+
mlp_ratio=4.0,
|
54 |
+
qkv_bias=True,
|
55 |
+
ffn_bias=True,
|
56 |
+
proj_bias=True,
|
57 |
+
drop_path_rate=0.0,
|
58 |
+
drop_path_uniform=False,
|
59 |
+
init_values=None, # for layerscale: None or 0 => no layerscale
|
60 |
+
embed_layer=PatchEmbed,
|
61 |
+
act_layer=nn.GELU,
|
62 |
+
block_fn=Block,
|
63 |
+
ffn_layer="mlp",
|
64 |
+
block_chunks=1,
|
65 |
+
num_register_tokens=0,
|
66 |
+
interpolate_antialias=False,
|
67 |
+
interpolate_offset=0.1,
|
68 |
+
):
|
69 |
+
"""
|
70 |
+
Args:
|
71 |
+
img_size (int, tuple): input image size
|
72 |
+
patch_size (int, tuple): patch size
|
73 |
+
in_chans (int): number of input channels
|
74 |
+
embed_dim (int): embedding dimension
|
75 |
+
depth (int): depth of transformer
|
76 |
+
num_heads (int): number of attention heads
|
77 |
+
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
|
78 |
+
qkv_bias (bool): enable bias for qkv if True
|
79 |
+
proj_bias (bool): enable bias for proj in attn if True
|
80 |
+
ffn_bias (bool): enable bias for ffn if True
|
81 |
+
drop_path_rate (float): stochastic depth rate
|
82 |
+
drop_path_uniform (bool): apply uniform drop rate across blocks
|
83 |
+
weight_init (str): weight init scheme
|
84 |
+
init_values (float): layer-scale init values
|
85 |
+
embed_layer (nn.Module): patch embedding layer
|
86 |
+
act_layer (nn.Module): MLP activation layer
|
87 |
+
block_fn (nn.Module): transformer block class
|
88 |
+
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
|
89 |
+
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
|
90 |
+
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
|
91 |
+
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
|
92 |
+
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
|
93 |
+
"""
|
94 |
+
super().__init__()
|
95 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
96 |
+
|
97 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
98 |
+
self.num_tokens = 1
|
99 |
+
self.n_blocks = depth
|
100 |
+
self.num_heads = num_heads
|
101 |
+
self.patch_size = patch_size
|
102 |
+
self.num_register_tokens = num_register_tokens
|
103 |
+
self.interpolate_antialias = interpolate_antialias
|
104 |
+
self.interpolate_offset = interpolate_offset
|
105 |
+
|
106 |
+
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
107 |
+
num_patches = self.patch_embed.num_patches
|
108 |
+
|
109 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
110 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
|
111 |
+
assert num_register_tokens >= 0
|
112 |
+
self.register_tokens = (
|
113 |
+
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
|
114 |
+
)
|
115 |
+
|
116 |
+
if drop_path_uniform is True:
|
117 |
+
dpr = [drop_path_rate] * depth
|
118 |
+
else:
|
119 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
120 |
+
|
121 |
+
if ffn_layer == "mlp":
|
122 |
+
logger.info("using MLP layer as FFN")
|
123 |
+
ffn_layer = Mlp
|
124 |
+
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
|
125 |
+
logger.info("using SwiGLU layer as FFN")
|
126 |
+
ffn_layer = SwiGLUFFNFused
|
127 |
+
elif ffn_layer == "identity":
|
128 |
+
logger.info("using Identity layer as FFN")
|
129 |
+
|
130 |
+
def f(*args, **kwargs):
|
131 |
+
return nn.Identity()
|
132 |
+
|
133 |
+
ffn_layer = f
|
134 |
+
else:
|
135 |
+
raise NotImplementedError
|
136 |
+
|
137 |
+
blocks_list = [
|
138 |
+
block_fn(
|
139 |
+
dim=embed_dim,
|
140 |
+
num_heads=num_heads,
|
141 |
+
mlp_ratio=mlp_ratio,
|
142 |
+
qkv_bias=qkv_bias,
|
143 |
+
proj_bias=proj_bias,
|
144 |
+
ffn_bias=ffn_bias,
|
145 |
+
drop_path=dpr[i],
|
146 |
+
norm_layer=norm_layer,
|
147 |
+
act_layer=act_layer,
|
148 |
+
ffn_layer=ffn_layer,
|
149 |
+
init_values=init_values,
|
150 |
+
)
|
151 |
+
for i in range(depth)
|
152 |
+
]
|
153 |
+
if block_chunks > 0:
|
154 |
+
self.chunked_blocks = True
|
155 |
+
chunked_blocks = []
|
156 |
+
chunksize = depth // block_chunks
|
157 |
+
for i in range(0, depth, chunksize):
|
158 |
+
# this is to keep the block index consistent if we chunk the block list
|
159 |
+
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
|
160 |
+
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
|
161 |
+
else:
|
162 |
+
self.chunked_blocks = False
|
163 |
+
self.blocks = nn.ModuleList(blocks_list)
|
164 |
+
|
165 |
+
self.norm = norm_layer(embed_dim)
|
166 |
+
self.head = nn.Identity()
|
167 |
+
|
168 |
+
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
|
169 |
+
|
170 |
+
self.init_weights()
|
171 |
+
|
172 |
+
def init_weights(self):
|
173 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
174 |
+
nn.init.normal_(self.cls_token, std=1e-6)
|
175 |
+
if self.register_tokens is not None:
|
176 |
+
nn.init.normal_(self.register_tokens, std=1e-6)
|
177 |
+
named_apply(init_weights_vit_timm, self)
|
178 |
+
|
179 |
+
def interpolate_pos_encoding(self, x, w, h):
|
180 |
+
previous_dtype = x.dtype
|
181 |
+
npatch = x.shape[1] - 1
|
182 |
+
N = self.pos_embed.shape[1] - 1
|
183 |
+
if npatch == N and w == h:
|
184 |
+
return self.pos_embed
|
185 |
+
pos_embed = self.pos_embed.float()
|
186 |
+
class_pos_embed = pos_embed[:, 0]
|
187 |
+
patch_pos_embed = pos_embed[:, 1:]
|
188 |
+
dim = x.shape[-1]
|
189 |
+
w0 = w // self.patch_size
|
190 |
+
h0 = h // self.patch_size
|
191 |
+
# we add a small number to avoid floating point error in the interpolation
|
192 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
193 |
+
# DINOv2 with register modify the interpolate_offset from 0.1 to 0.0
|
194 |
+
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
|
195 |
+
# w0, h0 = w0 + 0.1, h0 + 0.1
|
196 |
+
|
197 |
+
sqrt_N = math.sqrt(N)
|
198 |
+
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
|
199 |
+
patch_pos_embed = nn.functional.interpolate(
|
200 |
+
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
|
201 |
+
scale_factor=(sx, sy),
|
202 |
+
# (int(w0), int(h0)), # to solve the upsampling shape issue
|
203 |
+
mode="bicubic",
|
204 |
+
antialias=self.interpolate_antialias
|
205 |
+
)
|
206 |
+
|
207 |
+
assert int(w0) == patch_pos_embed.shape[-2]
|
208 |
+
assert int(h0) == patch_pos_embed.shape[-1]
|
209 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
210 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
|
211 |
+
|
212 |
+
def prepare_tokens_with_masks(self, x, masks=None):
|
213 |
+
B, nc, w, h = x.shape
|
214 |
+
x = self.patch_embed(x)
|
215 |
+
if masks is not None:
|
216 |
+
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
|
217 |
+
|
218 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
219 |
+
x = x + self.interpolate_pos_encoding(x, w, h)
|
220 |
+
|
221 |
+
if self.register_tokens is not None:
|
222 |
+
x = torch.cat(
|
223 |
+
(
|
224 |
+
x[:, :1],
|
225 |
+
self.register_tokens.expand(x.shape[0], -1, -1),
|
226 |
+
x[:, 1:],
|
227 |
+
),
|
228 |
+
dim=1,
|
229 |
+
)
|
230 |
+
|
231 |
+
return x
|
232 |
+
|
233 |
+
def forward_features_list(self, x_list, masks_list):
|
234 |
+
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
|
235 |
+
for blk in self.blocks:
|
236 |
+
x = blk(x)
|
237 |
+
|
238 |
+
all_x = x
|
239 |
+
output = []
|
240 |
+
for x, masks in zip(all_x, masks_list):
|
241 |
+
x_norm = self.norm(x)
|
242 |
+
output.append(
|
243 |
+
{
|
244 |
+
"x_norm_clstoken": x_norm[:, 0],
|
245 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
246 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
247 |
+
"x_prenorm": x,
|
248 |
+
"masks": masks,
|
249 |
+
}
|
250 |
+
)
|
251 |
+
return output
|
252 |
+
|
253 |
+
def forward_features(self, x, masks=None):
|
254 |
+
if isinstance(x, list):
|
255 |
+
return self.forward_features_list(x, masks)
|
256 |
+
|
257 |
+
x = self.prepare_tokens_with_masks(x, masks)
|
258 |
+
|
259 |
+
for blk in self.blocks:
|
260 |
+
x = blk(x)
|
261 |
+
|
262 |
+
x_norm = self.norm(x)
|
263 |
+
return {
|
264 |
+
"x_norm_clstoken": x_norm[:, 0],
|
265 |
+
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
|
266 |
+
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
|
267 |
+
"x_prenorm": x,
|
268 |
+
"masks": masks,
|
269 |
+
}
|
270 |
+
|
271 |
+
def _get_intermediate_layers_not_chunked(self, x, n=1):
|
272 |
+
x = self.prepare_tokens_with_masks(x)
|
273 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
274 |
+
output, total_block_len = [], len(self.blocks)
|
275 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
276 |
+
for i, blk in enumerate(self.blocks):
|
277 |
+
x = blk(x)
|
278 |
+
if i in blocks_to_take:
|
279 |
+
output.append(x)
|
280 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
281 |
+
return output
|
282 |
+
|
283 |
+
def _get_intermediate_layers_chunked(self, x, n=1):
|
284 |
+
x = self.prepare_tokens_with_masks(x)
|
285 |
+
output, i, total_block_len = [], 0, len(self.blocks[-1])
|
286 |
+
# If n is an int, take the n last blocks. If it's a list, take them
|
287 |
+
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
|
288 |
+
for block_chunk in self.blocks:
|
289 |
+
for blk in block_chunk[i:]: # Passing the nn.Identity()
|
290 |
+
x = blk(x)
|
291 |
+
if i in blocks_to_take:
|
292 |
+
output.append(x)
|
293 |
+
i += 1
|
294 |
+
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
|
295 |
+
return output
|
296 |
+
|
297 |
+
def get_intermediate_layers(
|
298 |
+
self,
|
299 |
+
x: torch.Tensor,
|
300 |
+
n: Union[int, Sequence] = 1, # Layers or n last layers to take
|
301 |
+
reshape: bool = False,
|
302 |
+
return_class_token: bool = False,
|
303 |
+
norm=True
|
304 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
|
305 |
+
if self.chunked_blocks:
|
306 |
+
outputs = self._get_intermediate_layers_chunked(x, n)
|
307 |
+
else:
|
308 |
+
outputs = self._get_intermediate_layers_not_chunked(x, n)
|
309 |
+
if norm:
|
310 |
+
outputs = [self.norm(out) for out in outputs]
|
311 |
+
class_tokens = [out[:, 0] for out in outputs]
|
312 |
+
outputs = [out[:, 1 + self.num_register_tokens:] for out in outputs]
|
313 |
+
if reshape:
|
314 |
+
B, _, w, h = x.shape
|
315 |
+
outputs = [
|
316 |
+
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
|
317 |
+
for out in outputs
|
318 |
+
]
|
319 |
+
if return_class_token:
|
320 |
+
return tuple(zip(outputs, class_tokens))
|
321 |
+
return tuple(outputs)
|
322 |
+
|
323 |
+
def forward(self, *args, is_training=False, **kwargs):
|
324 |
+
ret = self.forward_features(*args, **kwargs)
|
325 |
+
if is_training:
|
326 |
+
return ret
|
327 |
+
else:
|
328 |
+
return self.head(ret["x_norm_clstoken"])
|
329 |
+
|
330 |
+
|
331 |
+
def init_weights_vit_timm(module: nn.Module, name: str = ""):
|
332 |
+
"""ViT weight initialization, original timm impl (for reproducibility)"""
|
333 |
+
if isinstance(module, nn.Linear):
|
334 |
+
trunc_normal_(module.weight, std=0.02)
|
335 |
+
if module.bias is not None:
|
336 |
+
nn.init.zeros_(module.bias)
|
337 |
+
|
338 |
+
|
339 |
+
def vit_small(patch_size=16, num_register_tokens=0, **kwargs):
|
340 |
+
model = DinoVisionTransformer(
|
341 |
+
patch_size=patch_size,
|
342 |
+
embed_dim=384,
|
343 |
+
depth=12,
|
344 |
+
num_heads=6,
|
345 |
+
mlp_ratio=4,
|
346 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
347 |
+
num_register_tokens=num_register_tokens,
|
348 |
+
**kwargs,
|
349 |
+
)
|
350 |
+
return model
|
351 |
+
|
352 |
+
|
353 |
+
def vit_base(patch_size=16, num_register_tokens=0, **kwargs):
|
354 |
+
model = DinoVisionTransformer(
|
355 |
+
patch_size=patch_size,
|
356 |
+
embed_dim=768,
|
357 |
+
depth=12,
|
358 |
+
num_heads=12,
|
359 |
+
mlp_ratio=4,
|
360 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
361 |
+
num_register_tokens=num_register_tokens,
|
362 |
+
**kwargs,
|
363 |
+
)
|
364 |
+
return model
|
365 |
+
|
366 |
+
|
367 |
+
def vit_large(patch_size=16, num_register_tokens=0, **kwargs):
|
368 |
+
model = DinoVisionTransformer(
|
369 |
+
patch_size=patch_size,
|
370 |
+
embed_dim=1024,
|
371 |
+
depth=24,
|
372 |
+
num_heads=16,
|
373 |
+
mlp_ratio=4,
|
374 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
375 |
+
num_register_tokens=num_register_tokens,
|
376 |
+
**kwargs,
|
377 |
+
)
|
378 |
+
return model
|
379 |
+
|
380 |
+
|
381 |
+
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs):
|
382 |
+
"""
|
383 |
+
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
|
384 |
+
"""
|
385 |
+
model = DinoVisionTransformer(
|
386 |
+
patch_size=patch_size,
|
387 |
+
embed_dim=1536,
|
388 |
+
depth=40,
|
389 |
+
num_heads=24,
|
390 |
+
mlp_ratio=4,
|
391 |
+
block_fn=partial(Block, attn_class=MemEffAttention),
|
392 |
+
num_register_tokens=num_register_tokens,
|
393 |
+
**kwargs,
|
394 |
+
)
|
395 |
+
return model
|
396 |
+
|
397 |
+
|
398 |
+
def DINOv2(model_name):
|
399 |
+
model_zoo = {
|
400 |
+
"vits": vit_small,
|
401 |
+
"vitb": vit_base,
|
402 |
+
"vitl": vit_large,
|
403 |
+
"vitg": vit_giant2
|
404 |
+
}
|
405 |
+
|
406 |
+
return model_zoo[model_name](
|
407 |
+
img_size=518,
|
408 |
+
patch_size=14,
|
409 |
+
init_values=1.0,
|
410 |
+
ffn_layer="mlp" if model_name != "vitg" else "swiglufused",
|
411 |
+
block_chunks=0,
|
412 |
+
num_register_tokens=0,
|
413 |
+
interpolate_antialias=False,
|
414 |
+
interpolate_offset=0.1
|
415 |
+
)
|
depth_anything/dinov2_layers/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from .mlp import Mlp
|
8 |
+
from .patch_embed import PatchEmbed
|
9 |
+
from .swiglu_ffn import SwiGLUFFN, SwiGLUFFNFused
|
10 |
+
from .block import NestedTensorBlock
|
11 |
+
from .attention import MemEffAttention
|
depth_anything/dinov2_layers/attention.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
|
10 |
+
|
11 |
+
import logging
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
from torch import nn
|
15 |
+
|
16 |
+
|
17 |
+
logger = logging.getLogger("dinov2")
|
18 |
+
|
19 |
+
|
20 |
+
try:
|
21 |
+
from xformers.ops import memory_efficient_attention, unbind, fmha
|
22 |
+
|
23 |
+
XFORMERS_AVAILABLE = True
|
24 |
+
except ImportError:
|
25 |
+
logger.warning("xFormers not available")
|
26 |
+
XFORMERS_AVAILABLE = False
|
27 |
+
|
28 |
+
|
29 |
+
class Attention(nn.Module):
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
dim: int,
|
33 |
+
num_heads: int = 8,
|
34 |
+
qkv_bias: bool = False,
|
35 |
+
proj_bias: bool = True,
|
36 |
+
attn_drop: float = 0.0,
|
37 |
+
proj_drop: float = 0.0,
|
38 |
+
) -> None:
|
39 |
+
super().__init__()
|
40 |
+
self.num_heads = num_heads
|
41 |
+
head_dim = dim // num_heads
|
42 |
+
self.scale = head_dim**-0.5
|
43 |
+
|
44 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
45 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
46 |
+
self.proj = nn.Linear(dim, dim, bias=proj_bias)
|
47 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
48 |
+
|
49 |
+
def forward(self, x: Tensor) -> Tensor:
|
50 |
+
B, N, C = x.shape
|
51 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
52 |
+
|
53 |
+
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
|
54 |
+
attn = q @ k.transpose(-2, -1)
|
55 |
+
|
56 |
+
attn = attn.softmax(dim=-1)
|
57 |
+
attn = self.attn_drop(attn)
|
58 |
+
|
59 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
60 |
+
x = self.proj(x)
|
61 |
+
x = self.proj_drop(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class MemEffAttention(Attention):
|
66 |
+
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
|
67 |
+
if not XFORMERS_AVAILABLE:
|
68 |
+
assert attn_bias is None, "xFormers is required for nested tensors usage"
|
69 |
+
return super().forward(x)
|
70 |
+
|
71 |
+
B, N, C = x.shape
|
72 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
73 |
+
|
74 |
+
q, k, v = unbind(qkv, 2)
|
75 |
+
|
76 |
+
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias)
|
77 |
+
x = x.reshape([B, N, C])
|
78 |
+
|
79 |
+
x = self.proj(x)
|
80 |
+
x = self.proj_drop(x)
|
81 |
+
return x
|
82 |
+
|
83 |
+
|
depth_anything/dinov2_layers/block.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
10 |
+
|
11 |
+
import logging
|
12 |
+
from typing import Callable, List, Any, Tuple, Dict
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn, Tensor
|
16 |
+
|
17 |
+
from .attention import Attention, MemEffAttention
|
18 |
+
from .drop_path import DropPath
|
19 |
+
from .layer_scale import LayerScale
|
20 |
+
from .mlp import Mlp
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.getLogger("dinov2")
|
24 |
+
|
25 |
+
|
26 |
+
try:
|
27 |
+
from xformers.ops import fmha
|
28 |
+
from xformers.ops import scaled_index_add, index_select_cat
|
29 |
+
|
30 |
+
XFORMERS_AVAILABLE = True
|
31 |
+
except ImportError:
|
32 |
+
logger.warning("xFormers not available")
|
33 |
+
XFORMERS_AVAILABLE = False
|
34 |
+
|
35 |
+
|
36 |
+
class Block(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
dim: int,
|
40 |
+
num_heads: int,
|
41 |
+
mlp_ratio: float = 4.0,
|
42 |
+
qkv_bias: bool = False,
|
43 |
+
proj_bias: bool = True,
|
44 |
+
ffn_bias: bool = True,
|
45 |
+
drop: float = 0.0,
|
46 |
+
attn_drop: float = 0.0,
|
47 |
+
init_values=None,
|
48 |
+
drop_path: float = 0.0,
|
49 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
50 |
+
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
|
51 |
+
attn_class: Callable[..., nn.Module] = Attention,
|
52 |
+
ffn_layer: Callable[..., nn.Module] = Mlp,
|
53 |
+
) -> None:
|
54 |
+
super().__init__()
|
55 |
+
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
|
56 |
+
self.norm1 = norm_layer(dim)
|
57 |
+
self.attn = attn_class(
|
58 |
+
dim,
|
59 |
+
num_heads=num_heads,
|
60 |
+
qkv_bias=qkv_bias,
|
61 |
+
proj_bias=proj_bias,
|
62 |
+
attn_drop=attn_drop,
|
63 |
+
proj_drop=drop,
|
64 |
+
)
|
65 |
+
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
66 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
67 |
+
|
68 |
+
self.norm2 = norm_layer(dim)
|
69 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
70 |
+
self.mlp = ffn_layer(
|
71 |
+
in_features=dim,
|
72 |
+
hidden_features=mlp_hidden_dim,
|
73 |
+
act_layer=act_layer,
|
74 |
+
drop=drop,
|
75 |
+
bias=ffn_bias,
|
76 |
+
)
|
77 |
+
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
|
78 |
+
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
79 |
+
|
80 |
+
self.sample_drop_ratio = drop_path
|
81 |
+
|
82 |
+
def forward(self, x: Tensor) -> Tensor:
|
83 |
+
def attn_residual_func(x: Tensor) -> Tensor:
|
84 |
+
return self.ls1(self.attn(self.norm1(x)))
|
85 |
+
|
86 |
+
def ffn_residual_func(x: Tensor) -> Tensor:
|
87 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
88 |
+
|
89 |
+
if self.training and self.sample_drop_ratio > 0.1:
|
90 |
+
# the overhead is compensated only for a drop path rate larger than 0.1
|
91 |
+
x = drop_add_residual_stochastic_depth(
|
92 |
+
x,
|
93 |
+
residual_func=attn_residual_func,
|
94 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
95 |
+
)
|
96 |
+
x = drop_add_residual_stochastic_depth(
|
97 |
+
x,
|
98 |
+
residual_func=ffn_residual_func,
|
99 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
100 |
+
)
|
101 |
+
elif self.training and self.sample_drop_ratio > 0.0:
|
102 |
+
x = x + self.drop_path1(attn_residual_func(x))
|
103 |
+
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
|
104 |
+
else:
|
105 |
+
x = x + attn_residual_func(x)
|
106 |
+
x = x + ffn_residual_func(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
def drop_add_residual_stochastic_depth(
|
111 |
+
x: Tensor,
|
112 |
+
residual_func: Callable[[Tensor], Tensor],
|
113 |
+
sample_drop_ratio: float = 0.0,
|
114 |
+
) -> Tensor:
|
115 |
+
# 1) extract subset using permutation
|
116 |
+
b, n, d = x.shape
|
117 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
118 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
119 |
+
x_subset = x[brange]
|
120 |
+
|
121 |
+
# 2) apply residual_func to get residual
|
122 |
+
residual = residual_func(x_subset)
|
123 |
+
|
124 |
+
x_flat = x.flatten(1)
|
125 |
+
residual = residual.flatten(1)
|
126 |
+
|
127 |
+
residual_scale_factor = b / sample_subset_size
|
128 |
+
|
129 |
+
# 3) add the residual
|
130 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
131 |
+
return x_plus_residual.view_as(x)
|
132 |
+
|
133 |
+
|
134 |
+
def get_branges_scales(x, sample_drop_ratio=0.0):
|
135 |
+
b, n, d = x.shape
|
136 |
+
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
|
137 |
+
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
|
138 |
+
residual_scale_factor = b / sample_subset_size
|
139 |
+
return brange, residual_scale_factor
|
140 |
+
|
141 |
+
|
142 |
+
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
|
143 |
+
if scaling_vector is None:
|
144 |
+
x_flat = x.flatten(1)
|
145 |
+
residual = residual.flatten(1)
|
146 |
+
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
|
147 |
+
else:
|
148 |
+
x_plus_residual = scaled_index_add(
|
149 |
+
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
|
150 |
+
)
|
151 |
+
return x_plus_residual
|
152 |
+
|
153 |
+
|
154 |
+
attn_bias_cache: Dict[Tuple, Any] = {}
|
155 |
+
|
156 |
+
|
157 |
+
def get_attn_bias_and_cat(x_list, branges=None):
|
158 |
+
"""
|
159 |
+
this will perform the index select, cat the tensors, and provide the attn_bias from cache
|
160 |
+
"""
|
161 |
+
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
|
162 |
+
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
|
163 |
+
if all_shapes not in attn_bias_cache.keys():
|
164 |
+
seqlens = []
|
165 |
+
for b, x in zip(batch_sizes, x_list):
|
166 |
+
for _ in range(b):
|
167 |
+
seqlens.append(x.shape[1])
|
168 |
+
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
169 |
+
attn_bias._batch_sizes = batch_sizes
|
170 |
+
attn_bias_cache[all_shapes] = attn_bias
|
171 |
+
|
172 |
+
if branges is not None:
|
173 |
+
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
|
174 |
+
else:
|
175 |
+
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
|
176 |
+
cat_tensors = torch.cat(tensors_bs1, dim=1)
|
177 |
+
|
178 |
+
return attn_bias_cache[all_shapes], cat_tensors
|
179 |
+
|
180 |
+
|
181 |
+
def drop_add_residual_stochastic_depth_list(
|
182 |
+
x_list: List[Tensor],
|
183 |
+
residual_func: Callable[[Tensor, Any], Tensor],
|
184 |
+
sample_drop_ratio: float = 0.0,
|
185 |
+
scaling_vector=None,
|
186 |
+
) -> Tensor:
|
187 |
+
# 1) generate random set of indices for dropping samples in the batch
|
188 |
+
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
|
189 |
+
branges = [s[0] for s in branges_scales]
|
190 |
+
residual_scale_factors = [s[1] for s in branges_scales]
|
191 |
+
|
192 |
+
# 2) get attention bias and index+concat the tensors
|
193 |
+
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
|
194 |
+
|
195 |
+
# 3) apply residual_func to get residual, and split the result
|
196 |
+
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
|
197 |
+
|
198 |
+
outputs = []
|
199 |
+
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
|
200 |
+
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
|
201 |
+
return outputs
|
202 |
+
|
203 |
+
|
204 |
+
class NestedTensorBlock(Block):
|
205 |
+
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
|
206 |
+
"""
|
207 |
+
x_list contains a list of tensors to nest together and run
|
208 |
+
"""
|
209 |
+
assert isinstance(self.attn, MemEffAttention)
|
210 |
+
|
211 |
+
if self.training and self.sample_drop_ratio > 0.0:
|
212 |
+
|
213 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
214 |
+
return self.attn(self.norm1(x), attn_bias=attn_bias)
|
215 |
+
|
216 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
217 |
+
return self.mlp(self.norm2(x))
|
218 |
+
|
219 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
220 |
+
x_list,
|
221 |
+
residual_func=attn_residual_func,
|
222 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
223 |
+
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
|
224 |
+
)
|
225 |
+
x_list = drop_add_residual_stochastic_depth_list(
|
226 |
+
x_list,
|
227 |
+
residual_func=ffn_residual_func,
|
228 |
+
sample_drop_ratio=self.sample_drop_ratio,
|
229 |
+
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
|
230 |
+
)
|
231 |
+
return x_list
|
232 |
+
else:
|
233 |
+
|
234 |
+
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
235 |
+
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
|
236 |
+
|
237 |
+
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
|
238 |
+
return self.ls2(self.mlp(self.norm2(x)))
|
239 |
+
|
240 |
+
attn_bias, x = get_attn_bias_and_cat(x_list)
|
241 |
+
x = x + attn_residual_func(x, attn_bias=attn_bias)
|
242 |
+
x = x + ffn_residual_func(x)
|
243 |
+
return attn_bias.split(x)
|
244 |
+
|
245 |
+
def forward(self, x_or_x_list):
|
246 |
+
if isinstance(x_or_x_list, Tensor):
|
247 |
+
return super().forward(x_or_x_list)
|
248 |
+
elif isinstance(x_or_x_list, list):
|
249 |
+
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
|
250 |
+
return self.forward_nested(x_or_x_list)
|
251 |
+
else:
|
252 |
+
raise AssertionError
|
depth_anything/dinov2_layers/drop_path.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/drop.py
|
10 |
+
|
11 |
+
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
|
16 |
+
if drop_prob == 0.0 or not training:
|
17 |
+
return x
|
18 |
+
keep_prob = 1 - drop_prob
|
19 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
20 |
+
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
21 |
+
if keep_prob > 0.0:
|
22 |
+
random_tensor.div_(keep_prob)
|
23 |
+
output = x * random_tensor
|
24 |
+
return output
|
25 |
+
|
26 |
+
|
27 |
+
class DropPath(nn.Module):
|
28 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
29 |
+
|
30 |
+
def __init__(self, drop_prob=None):
|
31 |
+
super(DropPath, self).__init__()
|
32 |
+
self.drop_prob = drop_prob
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return drop_path(x, self.drop_prob, self.training)
|
depth_anything/dinov2_layers/layer_scale.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# Modified from: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L103-L110
|
8 |
+
|
9 |
+
from typing import Union
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from torch import Tensor
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
|
16 |
+
class LayerScale(nn.Module):
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
dim: int,
|
20 |
+
init_values: Union[float, Tensor] = 1e-5,
|
21 |
+
inplace: bool = False,
|
22 |
+
) -> None:
|
23 |
+
super().__init__()
|
24 |
+
self.inplace = inplace
|
25 |
+
self.gamma = nn.Parameter(init_values * torch.ones(dim))
|
26 |
+
|
27 |
+
def forward(self, x: Tensor) -> Tensor:
|
28 |
+
return x.mul_(self.gamma) if self.inplace else x * self.gamma
|
depth_anything/dinov2_layers/mlp.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/mlp.py
|
10 |
+
|
11 |
+
|
12 |
+
from typing import Callable, Optional
|
13 |
+
|
14 |
+
from torch import Tensor, nn
|
15 |
+
|
16 |
+
|
17 |
+
class Mlp(nn.Module):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
in_features: int,
|
21 |
+
hidden_features: Optional[int] = None,
|
22 |
+
out_features: Optional[int] = None,
|
23 |
+
act_layer: Callable[..., nn.Module] = nn.GELU,
|
24 |
+
drop: float = 0.0,
|
25 |
+
bias: bool = True,
|
26 |
+
) -> None:
|
27 |
+
super().__init__()
|
28 |
+
out_features = out_features or in_features
|
29 |
+
hidden_features = hidden_features or in_features
|
30 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
31 |
+
self.act = act_layer()
|
32 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
|
33 |
+
self.drop = nn.Dropout(drop)
|
34 |
+
|
35 |
+
def forward(self, x: Tensor) -> Tensor:
|
36 |
+
x = self.fc1(x)
|
37 |
+
x = self.act(x)
|
38 |
+
x = self.drop(x)
|
39 |
+
x = self.fc2(x)
|
40 |
+
x = self.drop(x)
|
41 |
+
return x
|
depth_anything/dinov2_layers/patch_embed.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
# References:
|
8 |
+
# https://github.com/facebookresearch/dino/blob/master/vision_transformer.py
|
9 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/layers/patch_embed.py
|
10 |
+
|
11 |
+
from typing import Callable, Optional, Tuple, Union
|
12 |
+
|
13 |
+
from torch import Tensor
|
14 |
+
import torch.nn as nn
|
15 |
+
|
16 |
+
|
17 |
+
def make_2tuple(x):
|
18 |
+
if isinstance(x, tuple):
|
19 |
+
assert len(x) == 2
|
20 |
+
return x
|
21 |
+
|
22 |
+
assert isinstance(x, int)
|
23 |
+
return (x, x)
|
24 |
+
|
25 |
+
|
26 |
+
class PatchEmbed(nn.Module):
|
27 |
+
"""
|
28 |
+
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
|
29 |
+
|
30 |
+
Args:
|
31 |
+
img_size: Image size.
|
32 |
+
patch_size: Patch token size.
|
33 |
+
in_chans: Number of input image channels.
|
34 |
+
embed_dim: Number of linear projection output channels.
|
35 |
+
norm_layer: Normalization layer.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
img_size: Union[int, Tuple[int, int]] = 224,
|
41 |
+
patch_size: Union[int, Tuple[int, int]] = 16,
|
42 |
+
in_chans: int = 3,
|
43 |
+
embed_dim: int = 768,
|
44 |
+
norm_layer: Optional[Callable] = None,
|
45 |
+
flatten_embedding: bool = True,
|
46 |
+
) -> None:
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
image_HW = make_2tuple(img_size)
|
50 |
+
patch_HW = make_2tuple(patch_size)
|
51 |
+
patch_grid_size = (
|
52 |
+
image_HW[0] // patch_HW[0],
|
53 |
+
image_HW[1] // patch_HW[1],
|
54 |
+
)
|
55 |
+
|
56 |
+
self.img_size = image_HW
|
57 |
+
self.patch_size = patch_HW
|
58 |
+
self.patches_resolution = patch_grid_size
|
59 |
+
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
|
60 |
+
|
61 |
+
self.in_chans = in_chans
|
62 |
+
self.embed_dim = embed_dim
|
63 |
+
|
64 |
+
self.flatten_embedding = flatten_embedding
|
65 |
+
|
66 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
|
67 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
68 |
+
|
69 |
+
def forward(self, x: Tensor) -> Tensor:
|
70 |
+
_, _, H, W = x.shape
|
71 |
+
patch_H, patch_W = self.patch_size
|
72 |
+
|
73 |
+
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
|
74 |
+
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
|
75 |
+
|
76 |
+
x = self.proj(x) # B C H W
|
77 |
+
H, W = x.size(2), x.size(3)
|
78 |
+
x = x.flatten(2).transpose(1, 2) # B HW C
|
79 |
+
x = self.norm(x)
|
80 |
+
if not self.flatten_embedding:
|
81 |
+
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
|
82 |
+
return x
|
83 |
+
|
84 |
+
def flops(self) -> float:
|
85 |
+
Ho, Wo = self.patches_resolution
|
86 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
87 |
+
if self.norm is not None:
|
88 |
+
flops += Ho * Wo * self.embed_dim
|
89 |
+
return flops
|
depth_anything/dinov2_layers/swiglu_ffn.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
from typing import Callable, Optional
|
8 |
+
|
9 |
+
from torch import Tensor, nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
class SwiGLUFFN(nn.Module):
|
14 |
+
def __init__(
|
15 |
+
self,
|
16 |
+
in_features: int,
|
17 |
+
hidden_features: Optional[int] = None,
|
18 |
+
out_features: Optional[int] = None,
|
19 |
+
act_layer: Callable[..., nn.Module] = None,
|
20 |
+
drop: float = 0.0,
|
21 |
+
bias: bool = True,
|
22 |
+
) -> None:
|
23 |
+
super().__init__()
|
24 |
+
out_features = out_features or in_features
|
25 |
+
hidden_features = hidden_features or in_features
|
26 |
+
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
|
27 |
+
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
|
28 |
+
|
29 |
+
def forward(self, x: Tensor) -> Tensor:
|
30 |
+
x12 = self.w12(x)
|
31 |
+
x1, x2 = x12.chunk(2, dim=-1)
|
32 |
+
hidden = F.silu(x1) * x2
|
33 |
+
return self.w3(hidden)
|
34 |
+
|
35 |
+
|
36 |
+
try:
|
37 |
+
from xformers.ops import SwiGLU
|
38 |
+
|
39 |
+
XFORMERS_AVAILABLE = True
|
40 |
+
except ImportError:
|
41 |
+
SwiGLU = SwiGLUFFN
|
42 |
+
XFORMERS_AVAILABLE = False
|
43 |
+
|
44 |
+
|
45 |
+
class SwiGLUFFNFused(SwiGLU):
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
in_features: int,
|
49 |
+
hidden_features: Optional[int] = None,
|
50 |
+
out_features: Optional[int] = None,
|
51 |
+
act_layer: Callable[..., nn.Module] = None,
|
52 |
+
drop: float = 0.0,
|
53 |
+
bias: bool = True,
|
54 |
+
) -> None:
|
55 |
+
out_features = out_features or in_features
|
56 |
+
hidden_features = hidden_features or in_features
|
57 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
58 |
+
super().__init__(
|
59 |
+
in_features=in_features,
|
60 |
+
hidden_features=hidden_features,
|
61 |
+
out_features=out_features,
|
62 |
+
bias=bias,
|
63 |
+
)
|
depth_anything/dpt.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import torchhub.facebookresearch_dinov2_main.hubconf as dinov2
|
5 |
+
|
6 |
+
from depth_anything.util.blocksv2 import FeatureFusionBlock, _make_scratch
|
7 |
+
from torchvision.transforms import Compose
|
8 |
+
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet
|
9 |
+
import cv2
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
def _make_fusion_block(features, use_bn, size = None):
|
13 |
+
return FeatureFusionBlock(
|
14 |
+
features,
|
15 |
+
nn.ReLU(False),
|
16 |
+
deconv=False,
|
17 |
+
bn=use_bn,
|
18 |
+
expand=False,
|
19 |
+
align_corners=True,
|
20 |
+
size=size,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
class DPTHead(nn.Module):
|
25 |
+
def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False):
|
26 |
+
super(DPTHead, self).__init__()
|
27 |
+
|
28 |
+
self.nclass = nclass
|
29 |
+
self.use_clstoken = use_clstoken
|
30 |
+
|
31 |
+
self.projects = nn.ModuleList([
|
32 |
+
nn.Conv2d(
|
33 |
+
in_channels=in_channels,
|
34 |
+
out_channels=out_channel,
|
35 |
+
kernel_size=1,
|
36 |
+
stride=1,
|
37 |
+
padding=0,
|
38 |
+
) for out_channel in out_channels
|
39 |
+
])
|
40 |
+
|
41 |
+
self.resize_layers = nn.ModuleList([
|
42 |
+
nn.ConvTranspose2d(
|
43 |
+
in_channels=out_channels[0],
|
44 |
+
out_channels=out_channels[0],
|
45 |
+
kernel_size=4,
|
46 |
+
stride=4,
|
47 |
+
padding=0),
|
48 |
+
nn.ConvTranspose2d(
|
49 |
+
in_channels=out_channels[1],
|
50 |
+
out_channels=out_channels[1],
|
51 |
+
kernel_size=2,
|
52 |
+
stride=2,
|
53 |
+
padding=0),
|
54 |
+
nn.Identity(),
|
55 |
+
nn.Conv2d(
|
56 |
+
in_channels=out_channels[3],
|
57 |
+
out_channels=out_channels[3],
|
58 |
+
kernel_size=3,
|
59 |
+
stride=2,
|
60 |
+
padding=1)
|
61 |
+
])
|
62 |
+
|
63 |
+
if use_clstoken:
|
64 |
+
self.readout_projects = nn.ModuleList()
|
65 |
+
for _ in range(len(self.projects)):
|
66 |
+
self.readout_projects.append(
|
67 |
+
nn.Sequential(
|
68 |
+
nn.Linear(2 * in_channels, in_channels),
|
69 |
+
nn.GELU()))
|
70 |
+
|
71 |
+
self.scratch = _make_scratch(
|
72 |
+
out_channels,
|
73 |
+
features,
|
74 |
+
groups=1,
|
75 |
+
expand=False,
|
76 |
+
)
|
77 |
+
|
78 |
+
self.scratch.stem_transpose = nn.Identity()
|
79 |
+
|
80 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
81 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
82 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
83 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
84 |
+
|
85 |
+
head_features_1 = features
|
86 |
+
head_features_2 = 32
|
87 |
+
|
88 |
+
if nclass > 1:
|
89 |
+
self.scratch.output_conv = nn.Sequential(
|
90 |
+
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
|
91 |
+
nn.ReLU(True),
|
92 |
+
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
|
93 |
+
)
|
94 |
+
else:
|
95 |
+
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
96 |
+
|
97 |
+
self.scratch.output_conv2 = nn.Sequential(
|
98 |
+
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
99 |
+
nn.ReLU(True),
|
100 |
+
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
101 |
+
nn.ReLU(True),
|
102 |
+
nn.Identity(),
|
103 |
+
)
|
104 |
+
|
105 |
+
def forward(self, out_features, patch_h, patch_w,need_fp=False,need_prior=False,teacher_features=None,alpha=0.8):
|
106 |
+
depth_out={}
|
107 |
+
out = []
|
108 |
+
for i, x in enumerate(out_features):
|
109 |
+
if self.use_clstoken:
|
110 |
+
x, cls_token = x[0], x[1]
|
111 |
+
readout = cls_token.unsqueeze(1).expand_as(x)
|
112 |
+
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
113 |
+
else:
|
114 |
+
x = x[0]
|
115 |
+
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous()
|
116 |
+
|
117 |
+
x = self.projects[i](x)
|
118 |
+
x = self.resize_layers[i](x)
|
119 |
+
|
120 |
+
out.append(x)
|
121 |
+
|
122 |
+
layer_1, layer_2, layer_3, layer_4 = out
|
123 |
+
|
124 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
125 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
126 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
127 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
128 |
+
|
129 |
+
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
130 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
131 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
132 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
133 |
+
|
134 |
+
out = self.scratch.output_conv1(path_1)
|
135 |
+
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
136 |
+
out = self.scratch.output_conv2(out)
|
137 |
+
|
138 |
+
depth_out['out']=out
|
139 |
+
|
140 |
+
return depth_out
|
141 |
+
|
142 |
+
|
143 |
+
class DPT_DINOv2(nn.Module):
|
144 |
+
def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True, version='v1'):
|
145 |
+
super(DPT_DINOv2, self).__init__()
|
146 |
+
|
147 |
+
assert encoder in ['vits', 'vitb', 'vitl']
|
148 |
+
self.intermediate_layer_idx = {
|
149 |
+
'vits': [2, 5, 8, 11],
|
150 |
+
'vitb': [2, 5, 8, 11],
|
151 |
+
'vitl': [4, 11, 17, 23],
|
152 |
+
'vitg': [9, 19, 29, 39]
|
153 |
+
}
|
154 |
+
self.encoder = encoder
|
155 |
+
self.version = version
|
156 |
+
# in case the Internet connection is not stable, please load the DINOv2 locally
|
157 |
+
# if localhub:
|
158 |
+
# self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=True)
|
159 |
+
# else:
|
160 |
+
# self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder))
|
161 |
+
self.pretrained = dinov2.__dict__['dinov2_{:}14'.format(encoder)](pretrained=True)
|
162 |
+
|
163 |
+
dim = self.pretrained.blocks[0].attn.qkv.in_features
|
164 |
+
|
165 |
+
self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
|
166 |
+
|
167 |
+
|
168 |
+
def forward(self, x,need_fp=False,teacher_features=None,alpha=0.8,prior_mode='teacher'):
|
169 |
+
depth_out={}
|
170 |
+
h, w = x.shape[-2:]
|
171 |
+
if self.version == 'v1':
|
172 |
+
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
|
173 |
+
else:
|
174 |
+
|
175 |
+
features = self.pretrained.get_intermediate_layers(x, self.intermediate_layer_idx[self.encoder], return_class_token=True)
|
176 |
+
patch_h, patch_w = h // 14, w // 14
|
177 |
+
|
178 |
+
depth_all = self.depth_head(features, patch_h, patch_w,need_fp,teacher_features,alpha)
|
179 |
+
depth=depth_all['out']
|
180 |
+
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
|
181 |
+
depth = F.relu(depth).squeeze(1)
|
182 |
+
depth_out['out']=depth
|
183 |
+
|
184 |
+
return depth_out
|
185 |
+
|
186 |
+
|
187 |
+
class DepthAnything_AC(DPT_DINOv2):
|
188 |
+
def __init__(self, config):
|
189 |
+
super().__init__(**config)
|
190 |
+
|
191 |
+
|
192 |
+
def get_intermediate_features(self, x):
|
193 |
+
"""
|
194 |
+
Extract intermediate features from the model
|
195 |
+
|
196 |
+
Args:
|
197 |
+
x: Input tensor of shape (B, C, H, W)
|
198 |
+
|
199 |
+
Returns:
|
200 |
+
dict: Dictionary containing intermediate features including:
|
201 |
+
- encoder_features: List of encoder feature maps
|
202 |
+
- decoder_features: List of decoder feature maps
|
203 |
+
- decoder_features_path: List of decoder path features
|
204 |
+
- cls_token: List of classification tokens
|
205 |
+
"""
|
206 |
+
features = {
|
207 |
+
'encoder_features': [],
|
208 |
+
'decoder_features': [],
|
209 |
+
'decoder_features_path': [],
|
210 |
+
'cls_token': []
|
211 |
+
}
|
212 |
+
|
213 |
+
h, w = x.shape[-2:]
|
214 |
+
patch_h, patch_w = h // 14, w // 14
|
215 |
+
|
216 |
+
all_features = []
|
217 |
+
for i in range(len(self.pretrained.blocks)):
|
218 |
+
feat = self.pretrained.get_intermediate_layers(x, [i], return_class_token=True)[0]
|
219 |
+
all_features.append(feat)
|
220 |
+
if i in [2, 5, 8, 11]:
|
221 |
+
feat_map = feat[0]
|
222 |
+
B, N, C = feat_map.shape
|
223 |
+
H = W = int(np.sqrt(N))
|
224 |
+
features['encoder_features'].append(feat_map.reshape(B, H, W, C).permute(0, 3, 1, 2))
|
225 |
+
|
226 |
+
out_features = []
|
227 |
+
for layer_idx in self.intermediate_layer_idx[self.encoder]:
|
228 |
+
out_features.append(all_features[layer_idx])
|
229 |
+
out = []
|
230 |
+
for i, feat in enumerate(out_features):
|
231 |
+
if self.depth_head.use_clstoken:
|
232 |
+
feat_map, cls_token = feat[0], feat[1]
|
233 |
+
readout = cls_token.unsqueeze(1).expand_as(feat_map)
|
234 |
+
feat_map = self.depth_head.readout_projects[i](torch.cat((feat_map, readout), -1))
|
235 |
+
features['cls_token'].append(cls_token)
|
236 |
+
else:
|
237 |
+
feat_map = feat[0]
|
238 |
+
feat_map = feat_map.permute(0, 2, 1).reshape((feat_map.shape[0], feat_map.shape[-1], patch_h, patch_w)).contiguous()
|
239 |
+
|
240 |
+
feat_map = self.depth_head.projects[i](feat_map)
|
241 |
+
feat_map = self.depth_head.resize_layers[i](feat_map)
|
242 |
+
|
243 |
+
out.append(feat_map)
|
244 |
+
|
245 |
+
layer_1, layer_2, layer_3, layer_4 = out
|
246 |
+
|
247 |
+
layer_1_rn = self.depth_head.scratch.layer1_rn(layer_1)
|
248 |
+
layer_2_rn = self.depth_head.scratch.layer2_rn(layer_2)
|
249 |
+
layer_3_rn = self.depth_head.scratch.layer3_rn(layer_3)
|
250 |
+
layer_4_rn = self.depth_head.scratch.layer4_rn(layer_4)
|
251 |
+
|
252 |
+
features['decoder_features'].append(layer_1_rn)
|
253 |
+
features['decoder_features'].append(layer_2_rn)
|
254 |
+
features['decoder_features'].append(layer_3_rn)
|
255 |
+
features['decoder_features'].append(layer_4_rn)
|
256 |
+
|
257 |
+
path_4 = self.depth_head.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
258 |
+
path_3 = self.depth_head.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
259 |
+
path_2 = self.depth_head.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
260 |
+
path_1 = self.depth_head.scratch.refinenet1(path_2, layer_1_rn)
|
261 |
+
|
262 |
+
features['decoder_features_path'].append(path_1)
|
263 |
+
features['decoder_features_path'].append(path_2)
|
264 |
+
features['decoder_features_path'].append(path_3)
|
265 |
+
features['decoder_features_path'].append(path_4)
|
266 |
+
|
267 |
+
return features
|
268 |
+
|
depth_anything/dpt_teacher.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from depth_anything.util.blocksv1 import FeatureFusionBlock, _make_scratch
|
7 |
+
|
8 |
+
|
9 |
+
def _make_fusion_block(features, use_bn, size = None):
|
10 |
+
return FeatureFusionBlock(
|
11 |
+
features,
|
12 |
+
nn.ReLU(False),
|
13 |
+
deconv=False,
|
14 |
+
bn=use_bn,
|
15 |
+
expand=False,
|
16 |
+
align_corners=True,
|
17 |
+
size=size,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
class DPTHead(nn.Module):
|
22 |
+
def __init__(self, nclass, in_channels, features=256, use_bn=False, out_channels=[256, 512, 1024, 1024], use_clstoken=False):
|
23 |
+
super(DPTHead, self).__init__()
|
24 |
+
|
25 |
+
self.nclass = nclass
|
26 |
+
self.use_clstoken = use_clstoken
|
27 |
+
|
28 |
+
self.projects = nn.ModuleList([
|
29 |
+
nn.Conv2d(
|
30 |
+
in_channels=in_channels,
|
31 |
+
out_channels=out_channel,
|
32 |
+
kernel_size=1,
|
33 |
+
stride=1,
|
34 |
+
padding=0,
|
35 |
+
) for out_channel in out_channels
|
36 |
+
])
|
37 |
+
|
38 |
+
self.resize_layers = nn.ModuleList([
|
39 |
+
nn.ConvTranspose2d(
|
40 |
+
in_channels=out_channels[0],
|
41 |
+
out_channels=out_channels[0],
|
42 |
+
kernel_size=4,
|
43 |
+
stride=4,
|
44 |
+
padding=0),
|
45 |
+
nn.ConvTranspose2d(
|
46 |
+
in_channels=out_channels[1],
|
47 |
+
out_channels=out_channels[1],
|
48 |
+
kernel_size=2,
|
49 |
+
stride=2,
|
50 |
+
padding=0),
|
51 |
+
nn.Identity(),
|
52 |
+
nn.Conv2d(
|
53 |
+
in_channels=out_channels[3],
|
54 |
+
out_channels=out_channels[3],
|
55 |
+
kernel_size=3,
|
56 |
+
stride=2,
|
57 |
+
padding=1)
|
58 |
+
])
|
59 |
+
|
60 |
+
if use_clstoken:
|
61 |
+
self.readout_projects = nn.ModuleList()
|
62 |
+
for _ in range(len(self.projects)):
|
63 |
+
self.readout_projects.append(
|
64 |
+
nn.Sequential(
|
65 |
+
nn.Linear(2 * in_channels, in_channels),
|
66 |
+
nn.GELU()))
|
67 |
+
|
68 |
+
self.scratch = _make_scratch(
|
69 |
+
out_channels,
|
70 |
+
features,
|
71 |
+
groups=1,
|
72 |
+
expand=False,
|
73 |
+
)
|
74 |
+
|
75 |
+
self.scratch.stem_transpose = nn.Identity()
|
76 |
+
|
77 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
78 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
79 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
80 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
81 |
+
|
82 |
+
head_features_1 = features
|
83 |
+
head_features_2 = 32
|
84 |
+
|
85 |
+
if nclass > 1:
|
86 |
+
self.scratch.output_conv = nn.Sequential(
|
87 |
+
nn.Conv2d(head_features_1, head_features_1, kernel_size=3, stride=1, padding=1),
|
88 |
+
nn.ReLU(True),
|
89 |
+
nn.Conv2d(head_features_1, nclass, kernel_size=1, stride=1, padding=0),
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
self.scratch.output_conv1 = nn.Conv2d(head_features_1, head_features_1 // 2, kernel_size=3, stride=1, padding=1)
|
93 |
+
|
94 |
+
self.scratch.output_conv2 = nn.Sequential(
|
95 |
+
nn.Conv2d(head_features_1 // 2, head_features_2, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(head_features_2, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
def forward(self, out_features, patch_h, patch_w):
|
103 |
+
out = []
|
104 |
+
for i, x in enumerate(out_features):
|
105 |
+
if self.use_clstoken:
|
106 |
+
x, cls_token = x[0], x[1]
|
107 |
+
readout = cls_token.unsqueeze(1).expand_as(x)
|
108 |
+
x = self.readout_projects[i](torch.cat((x, readout), -1))
|
109 |
+
else:
|
110 |
+
x = x[0]
|
111 |
+
x = x.permute(0, 2, 1).reshape((x.shape[0], x.shape[-1], patch_h, patch_w)).contiguous()
|
112 |
+
|
113 |
+
x = self.projects[i](x)
|
114 |
+
x = self.resize_layers[i](x)
|
115 |
+
|
116 |
+
out.append(x)
|
117 |
+
|
118 |
+
|
119 |
+
layer_1, layer_2, layer_3, layer_4 = out
|
120 |
+
|
121 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
122 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
123 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
124 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
125 |
+
|
126 |
+
path_4 = self.scratch.refinenet4(layer_4_rn, size=layer_3_rn.shape[2:])
|
127 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn, size=layer_2_rn.shape[2:])
|
128 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn, size=layer_1_rn.shape[2:])
|
129 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
130 |
+
|
131 |
+
out = self.scratch.output_conv1(path_1)
|
132 |
+
out = F.interpolate(out, (int(patch_h * 14), int(patch_w * 14)), mode="bilinear", align_corners=True)
|
133 |
+
out = self.scratch.output_conv2(out)
|
134 |
+
|
135 |
+
return out
|
136 |
+
|
137 |
+
|
138 |
+
class DPT_DINOv2(nn.Module):
|
139 |
+
def __init__(self, encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024], use_bn=False, use_clstoken=False, localhub=True):
|
140 |
+
super(DPT_DINOv2, self).__init__()
|
141 |
+
|
142 |
+
assert encoder in ['vits', 'vitb', 'vitl']
|
143 |
+
|
144 |
+
# in case the Internet connection is not stable, please load the DINOv2 locally
|
145 |
+
if localhub:
|
146 |
+
self.pretrained = torch.hub.load('torchhub/facebookresearch_dinov2_main', 'dinov2_{:}14'.format(encoder), source='local', pretrained=True)
|
147 |
+
else:
|
148 |
+
self.pretrained = torch.hub.load('facebookresearch/dinov2', 'dinov2_{:}14'.format(encoder))
|
149 |
+
|
150 |
+
dim = self.pretrained.blocks[0].attn.qkv.in_features
|
151 |
+
|
152 |
+
self.depth_head = DPTHead(1, dim, features, use_bn, out_channels=out_channels, use_clstoken=use_clstoken)
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
h, w = x.shape[-2:]
|
156 |
+
|
157 |
+
features = self.pretrained.get_intermediate_layers(x, 4, return_class_token=True)
|
158 |
+
patch_h, patch_w = h // 14, w // 14
|
159 |
+
|
160 |
+
depth = self.depth_head(features, patch_h, patch_w)
|
161 |
+
depth = F.interpolate(depth, size=(h, w), mode="bilinear", align_corners=True)
|
162 |
+
depth = F.relu(depth)
|
163 |
+
|
164 |
+
|
165 |
+
return depth.squeeze(1)
|
166 |
+
|
167 |
+
|
168 |
+
class DepthAnythingTeacher(DPT_DINOv2):
|
169 |
+
def __init__(self, config):
|
170 |
+
super().__init__(**config)
|
171 |
+
|
172 |
+
|
173 |
+
|
depth_anything/util/__pycache__/blocksv2.cpython-39.pyc
ADDED
Binary file (3.28 kB). View file
|
|
depth_anything/util/__pycache__/transform.cpython-39.pyc
ADDED
Binary file (6.06 kB). View file
|
|
depth_anything/util/blocksv1.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
5 |
+
scratch = nn.Module()
|
6 |
+
|
7 |
+
out_shape1 = out_shape
|
8 |
+
out_shape2 = out_shape
|
9 |
+
out_shape3 = out_shape
|
10 |
+
if len(in_shape) >= 4:
|
11 |
+
out_shape4 = out_shape
|
12 |
+
|
13 |
+
if expand:
|
14 |
+
out_shape1 = out_shape
|
15 |
+
out_shape2 = out_shape*2
|
16 |
+
out_shape3 = out_shape*4
|
17 |
+
if len(in_shape) >= 4:
|
18 |
+
out_shape4 = out_shape*8
|
19 |
+
|
20 |
+
scratch.layer1_rn = nn.Conv2d(
|
21 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
22 |
+
)
|
23 |
+
scratch.layer2_rn = nn.Conv2d(
|
24 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
25 |
+
)
|
26 |
+
scratch.layer3_rn = nn.Conv2d(
|
27 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
28 |
+
)
|
29 |
+
if len(in_shape) >= 4:
|
30 |
+
scratch.layer4_rn = nn.Conv2d(
|
31 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
32 |
+
)
|
33 |
+
|
34 |
+
return scratch
|
35 |
+
|
36 |
+
|
37 |
+
class ResidualConvUnit(nn.Module):
|
38 |
+
"""Residual convolution module.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, features, activation, bn):
|
42 |
+
"""Init.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
features (int): number of features
|
46 |
+
"""
|
47 |
+
super().__init__()
|
48 |
+
|
49 |
+
self.bn = bn
|
50 |
+
|
51 |
+
self.groups=1
|
52 |
+
|
53 |
+
self.conv1 = nn.Conv2d(
|
54 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
55 |
+
)
|
56 |
+
|
57 |
+
self.conv2 = nn.Conv2d(
|
58 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
59 |
+
)
|
60 |
+
|
61 |
+
if self.bn==True:
|
62 |
+
self.bn1 = nn.BatchNorm2d(features)
|
63 |
+
self.bn2 = nn.BatchNorm2d(features)
|
64 |
+
|
65 |
+
self.activation = activation
|
66 |
+
|
67 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
68 |
+
|
69 |
+
def forward(self, x):
|
70 |
+
"""Forward pass.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
x (tensor): input
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
tensor: output
|
77 |
+
"""
|
78 |
+
|
79 |
+
out = self.activation(x)
|
80 |
+
out = self.conv1(out)
|
81 |
+
if self.bn==True:
|
82 |
+
out = self.bn1(out)
|
83 |
+
|
84 |
+
out = self.activation(out)
|
85 |
+
out = self.conv2(out)
|
86 |
+
if self.bn==True:
|
87 |
+
out = self.bn2(out)
|
88 |
+
|
89 |
+
if self.groups > 1:
|
90 |
+
out = self.conv_merge(out)
|
91 |
+
|
92 |
+
return self.skip_add.add(out, x)
|
93 |
+
|
94 |
+
|
95 |
+
class FeatureFusionBlock(nn.Module):
|
96 |
+
"""Feature fusion block.
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None):
|
100 |
+
"""Init.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
features (int): number of features
|
104 |
+
"""
|
105 |
+
super(FeatureFusionBlock, self).__init__()
|
106 |
+
|
107 |
+
self.deconv = deconv
|
108 |
+
self.align_corners = align_corners
|
109 |
+
|
110 |
+
self.groups=1
|
111 |
+
|
112 |
+
self.expand = expand
|
113 |
+
out_features = features
|
114 |
+
if self.expand==True:
|
115 |
+
out_features = features//2
|
116 |
+
|
117 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
118 |
+
|
119 |
+
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
120 |
+
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
121 |
+
|
122 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
123 |
+
|
124 |
+
self.size=size
|
125 |
+
|
126 |
+
def forward(self, *xs, size=None):
|
127 |
+
"""Forward pass.
|
128 |
+
|
129 |
+
Returns:
|
130 |
+
tensor: output
|
131 |
+
"""
|
132 |
+
output = xs[0]
|
133 |
+
|
134 |
+
if len(xs) == 2:
|
135 |
+
res = self.resConfUnit1(xs[1])
|
136 |
+
output = self.skip_add.add(output, res)
|
137 |
+
|
138 |
+
output = self.resConfUnit2(output)
|
139 |
+
|
140 |
+
if (size is None) and (self.size is None):
|
141 |
+
modifier = {"scale_factor": 2}
|
142 |
+
elif size is None:
|
143 |
+
modifier = {"size": self.size}
|
144 |
+
else:
|
145 |
+
modifier = {"size": size}
|
146 |
+
|
147 |
+
output = nn.functional.interpolate(
|
148 |
+
output, **modifier, mode="bilinear", align_corners=self.align_corners
|
149 |
+
)
|
150 |
+
|
151 |
+
output = self.out_conv(output)
|
152 |
+
|
153 |
+
return output
|
depth_anything/util/blocksv2.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
5 |
+
scratch = nn.Module()
|
6 |
+
|
7 |
+
out_shape1 = out_shape
|
8 |
+
out_shape2 = out_shape
|
9 |
+
out_shape3 = out_shape
|
10 |
+
if len(in_shape) >= 4:
|
11 |
+
out_shape4 = out_shape
|
12 |
+
|
13 |
+
if expand:
|
14 |
+
out_shape1 = out_shape
|
15 |
+
out_shape2 = out_shape * 2
|
16 |
+
out_shape3 = out_shape * 4
|
17 |
+
if len(in_shape) >= 4:
|
18 |
+
out_shape4 = out_shape * 8
|
19 |
+
|
20 |
+
scratch.layer1_rn = nn.Conv2d(in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
21 |
+
scratch.layer2_rn = nn.Conv2d(in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
22 |
+
scratch.layer3_rn = nn.Conv2d(in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
23 |
+
if len(in_shape) >= 4:
|
24 |
+
scratch.layer4_rn = nn.Conv2d(in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups)
|
25 |
+
|
26 |
+
return scratch
|
27 |
+
|
28 |
+
|
29 |
+
class ResidualConvUnit(nn.Module):
|
30 |
+
"""Residual convolution module.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self, features, activation, bn):
|
34 |
+
"""Init.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
features (int): number of features
|
38 |
+
"""
|
39 |
+
super().__init__()
|
40 |
+
|
41 |
+
self.bn = bn
|
42 |
+
|
43 |
+
self.groups=1
|
44 |
+
|
45 |
+
self.conv1 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
46 |
+
|
47 |
+
self.conv2 = nn.Conv2d(features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups)
|
48 |
+
|
49 |
+
if self.bn == True:
|
50 |
+
self.bn1 = nn.BatchNorm2d(features)
|
51 |
+
self.bn2 = nn.BatchNorm2d(features)
|
52 |
+
|
53 |
+
self.activation = activation
|
54 |
+
|
55 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
"""Forward pass.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
x (tensor): input
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
tensor: output
|
65 |
+
"""
|
66 |
+
|
67 |
+
out = self.activation(x)
|
68 |
+
out = self.conv1(out)
|
69 |
+
if self.bn == True:
|
70 |
+
out = self.bn1(out)
|
71 |
+
|
72 |
+
out = self.activation(out)
|
73 |
+
out = self.conv2(out)
|
74 |
+
if self.bn == True:
|
75 |
+
out = self.bn2(out)
|
76 |
+
|
77 |
+
if self.groups > 1:
|
78 |
+
out = self.conv_merge(out)
|
79 |
+
|
80 |
+
return self.skip_add.add(out, x)
|
81 |
+
|
82 |
+
|
83 |
+
class FeatureFusionBlock(nn.Module):
|
84 |
+
"""Feature fusion block.
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
features,
|
90 |
+
activation,
|
91 |
+
deconv=False,
|
92 |
+
bn=False,
|
93 |
+
expand=False,
|
94 |
+
align_corners=True,
|
95 |
+
size=None
|
96 |
+
):
|
97 |
+
"""Init.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
features (int): number of features
|
101 |
+
"""
|
102 |
+
super(FeatureFusionBlock, self).__init__()
|
103 |
+
|
104 |
+
self.deconv = deconv
|
105 |
+
self.align_corners = align_corners
|
106 |
+
|
107 |
+
self.groups=1
|
108 |
+
|
109 |
+
self.expand = expand
|
110 |
+
out_features = features
|
111 |
+
if self.expand == True:
|
112 |
+
out_features = features // 2
|
113 |
+
|
114 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
115 |
+
|
116 |
+
self.resConfUnit1 = ResidualConvUnit(features, activation, bn)
|
117 |
+
self.resConfUnit2 = ResidualConvUnit(features, activation, bn)
|
118 |
+
|
119 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
120 |
+
|
121 |
+
self.size=size
|
122 |
+
|
123 |
+
def forward(self, *xs, size=None):
|
124 |
+
"""Forward pass.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
tensor: output
|
128 |
+
"""
|
129 |
+
output = xs[0]
|
130 |
+
|
131 |
+
if len(xs) == 2:
|
132 |
+
res = self.resConfUnit1(xs[1])
|
133 |
+
output = self.skip_add.add(output, res)
|
134 |
+
|
135 |
+
output = self.resConfUnit2(output)
|
136 |
+
|
137 |
+
if (size is None) and (self.size is None):
|
138 |
+
modifier = {"scale_factor": 2}
|
139 |
+
elif size is None:
|
140 |
+
modifier = {"size": self.size}
|
141 |
+
else:
|
142 |
+
modifier = {"size": size}
|
143 |
+
|
144 |
+
output = nn.functional.interpolate(output, **modifier, mode="bilinear", align_corners=self.align_corners)
|
145 |
+
|
146 |
+
output = self.out_conv(output)
|
147 |
+
|
148 |
+
return output
|
depth_anything/util/dformerv2.py
ADDED
@@ -0,0 +1,622 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
DFormerv2: Geometry Self-Attention for RGBD Semantic Segmentation
|
3 |
+
Code: https://github.com/VCIP-RGBD/DFormer
|
4 |
+
|
5 |
+
Author: yinbow
|
6 |
+
Email: [email protected]
|
7 |
+
|
8 |
+
This source code is licensed under the license found in the
|
9 |
+
LICENSE file in the root directory of this source tree.
|
10 |
+
'''
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import torch.utils.checkpoint as checkpoint
|
16 |
+
import math
|
17 |
+
from timm.models.layers import DropPath, trunc_normal_
|
18 |
+
from typing import List
|
19 |
+
from mmengine.runner.checkpoint import load_state_dict
|
20 |
+
from mmengine.runner.checkpoint import load_checkpoint
|
21 |
+
from typing import Tuple
|
22 |
+
import sys
|
23 |
+
import os
|
24 |
+
from collections import OrderedDict
|
25 |
+
|
26 |
+
class LayerNorm2d(nn.Module):
|
27 |
+
def __init__(self, dim):
|
28 |
+
super().__init__()
|
29 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
30 |
+
|
31 |
+
def forward(self, x: torch.Tensor):
|
32 |
+
'''
|
33 |
+
input shape (b c h w)
|
34 |
+
'''
|
35 |
+
x = x.permute(0, 2, 3, 1).contiguous() #(b h w c)
|
36 |
+
x = self.norm(x) #(b h w c)
|
37 |
+
x = x.permute(0, 3, 1, 2).contiguous()
|
38 |
+
return x
|
39 |
+
|
40 |
+
class PatchEmbed(nn.Module):
|
41 |
+
"""
|
42 |
+
Image to Patch Embedding
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, in_chans=3, embed_dim=96, norm_layer=None):
|
46 |
+
super().__init__()
|
47 |
+
self.in_chans = in_chans
|
48 |
+
self.embed_dim = embed_dim
|
49 |
+
|
50 |
+
self.proj = nn.Sequential(
|
51 |
+
nn.Conv2d(in_chans, embed_dim//2, 3, 2, 1),
|
52 |
+
nn.SyncBatchNorm(embed_dim//2),
|
53 |
+
nn.GELU(),
|
54 |
+
nn.Conv2d(embed_dim//2, embed_dim//2, 3, 1, 1),
|
55 |
+
nn.SyncBatchNorm(embed_dim//2),
|
56 |
+
nn.GELU(),
|
57 |
+
nn.Conv2d(embed_dim//2, embed_dim, 3, 2, 1),
|
58 |
+
nn.SyncBatchNorm(embed_dim),
|
59 |
+
nn.GELU(),
|
60 |
+
nn.Conv2d(embed_dim, embed_dim, 3, 1, 1),
|
61 |
+
nn.SyncBatchNorm(embed_dim)
|
62 |
+
)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
B, C, H, W = x.shape
|
66 |
+
x = self.proj(x).permute(0, 2, 3, 1)
|
67 |
+
return x
|
68 |
+
|
69 |
+
class DWConv2d(nn.Module):
|
70 |
+
|
71 |
+
def __init__(self, dim, kernel_size, stride, padding):
|
72 |
+
super().__init__()
|
73 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size, stride, padding, groups=dim)
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor):
|
76 |
+
'''
|
77 |
+
input (b h w c)
|
78 |
+
'''
|
79 |
+
x = x.permute(0, 3, 1, 2)
|
80 |
+
x = self.dwconv(x)
|
81 |
+
x = x.permute(0, 2, 3, 1)
|
82 |
+
return x
|
83 |
+
|
84 |
+
class PatchMerging(nn.Module):
|
85 |
+
"""
|
86 |
+
Patch Merging Layer.
|
87 |
+
"""
|
88 |
+
def __init__(self, dim, out_dim, norm_layer=nn.LayerNorm):
|
89 |
+
super().__init__()
|
90 |
+
self.dim = dim
|
91 |
+
self.reduction = nn.Conv2d(dim, out_dim, 3, 2, 1)
|
92 |
+
self.norm = nn.SyncBatchNorm(out_dim)
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
'''
|
96 |
+
x: B H W C
|
97 |
+
'''
|
98 |
+
x = x.permute(0, 3, 1, 2).contiguous() #(b c h w)
|
99 |
+
x = self.reduction(x) #(b oc oh ow)
|
100 |
+
x = self.norm(x)
|
101 |
+
x = x.permute(0, 2, 3, 1) #(b oh ow oc)
|
102 |
+
return x
|
103 |
+
|
104 |
+
def angle_transform(x, sin, cos):
|
105 |
+
x1 = x[:, :, :, :, ::2]
|
106 |
+
x2 = x[:, :, :, :, 1::2]
|
107 |
+
return (x * cos) + (torch.stack([-x2, x1], dim=-1).flatten(-2) * sin)
|
108 |
+
|
109 |
+
class GeoPriorGen(nn.Module):
|
110 |
+
|
111 |
+
def __init__(self, embed_dim, num_heads, initial_value, heads_range):
|
112 |
+
super().__init__()
|
113 |
+
angle = 1.0 / (10000 ** torch.linspace(0, 1, embed_dim // num_heads // 2))
|
114 |
+
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
|
115 |
+
self.weight = nn.Parameter(torch.ones(2,1,1,1), requires_grad=True)
|
116 |
+
decay = torch.log(1 - 2 ** (-initial_value - heads_range * torch.arange(num_heads, dtype=torch.float) / num_heads))
|
117 |
+
self.register_buffer('angle', angle)
|
118 |
+
self.register_buffer('decay', decay)
|
119 |
+
|
120 |
+
def generate_depth_decay(self, H: int, W: int, depth_grid):
|
121 |
+
'''
|
122 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
123 |
+
H, W are the numbers of patches at each column and row
|
124 |
+
'''
|
125 |
+
B,_,H,W = depth_grid.shape
|
126 |
+
grid_d = depth_grid.reshape(B, H*W, 1)
|
127 |
+
mask_d = grid_d[:, :, None, :] - grid_d[:, None, :, :]
|
128 |
+
mask_d = (mask_d.abs()).sum(dim=-1)
|
129 |
+
mask_d = mask_d.unsqueeze(1) * self.decay[None, :, None, None]
|
130 |
+
return mask_d
|
131 |
+
|
132 |
+
def generate_pos_decay(self, H: int, W: int):
|
133 |
+
'''
|
134 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
135 |
+
H, W are the numbers of patches at each column and row
|
136 |
+
'''
|
137 |
+
index_h = torch.arange(H).to(self.decay)
|
138 |
+
index_w = torch.arange(W).to(self.decay)
|
139 |
+
grid = torch.meshgrid([index_h, index_w])
|
140 |
+
grid = torch.stack(grid, dim=-1).reshape(H*W, 2)
|
141 |
+
mask = grid[:, None, :] - grid[None, :, :]
|
142 |
+
mask = (mask.abs()).sum(dim=-1)
|
143 |
+
mask = mask * self.decay[:, None, None]
|
144 |
+
return mask
|
145 |
+
|
146 |
+
def generate_1d_depth_decay(self, H, W, depth_grid):
|
147 |
+
'''
|
148 |
+
generate 1d depth decay mask, the result is l*l
|
149 |
+
'''
|
150 |
+
mask = depth_grid[:, :, :, :, None] - depth_grid[:, :, :, None, :]
|
151 |
+
mask = mask.abs()
|
152 |
+
mask = mask * self.decay[:, None, None, None]
|
153 |
+
assert mask.shape[2:] == (W,H,H)
|
154 |
+
return mask
|
155 |
+
|
156 |
+
|
157 |
+
def generate_1d_decay(self, l: int):
|
158 |
+
'''
|
159 |
+
generate 1d decay mask, the result is l*l
|
160 |
+
'''
|
161 |
+
index = torch.arange(l).to(self.decay)
|
162 |
+
mask = index[:, None] - index[None, :]
|
163 |
+
mask = mask.abs()
|
164 |
+
mask = mask * self.decay[:, None, None]
|
165 |
+
return mask
|
166 |
+
|
167 |
+
def forward(self, HW_tuple: Tuple[int], depth_map, split_or_not=False):
|
168 |
+
'''
|
169 |
+
depth_map: depth patches
|
170 |
+
HW_tuple: (H, W)
|
171 |
+
H * W == l
|
172 |
+
'''
|
173 |
+
depth_map = F.interpolate(depth_map, size=HW_tuple,mode='bilinear',align_corners=False)
|
174 |
+
|
175 |
+
if split_or_not:
|
176 |
+
index = torch.arange(HW_tuple[0]*HW_tuple[1]).to(self.decay)
|
177 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
178 |
+
sin = sin.reshape(HW_tuple[0], HW_tuple[1], -1)
|
179 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
180 |
+
cos = cos.reshape(HW_tuple[0], HW_tuple[1], -1)
|
181 |
+
|
182 |
+
mask_d_h = self.generate_1d_depth_decay(HW_tuple[0], HW_tuple[1], depth_map.transpose(-2,-1))
|
183 |
+
mask_d_w = self.generate_1d_depth_decay(HW_tuple[1], HW_tuple[0], depth_map)
|
184 |
+
|
185 |
+
|
186 |
+
mask_h = self.generate_1d_decay(HW_tuple[0])
|
187 |
+
mask_w = self.generate_1d_decay(HW_tuple[1])
|
188 |
+
|
189 |
+
mask_h = self.weight[0]*mask_h.unsqueeze(0).unsqueeze(2) + self.weight[1]*mask_d_h
|
190 |
+
mask_w = self.weight[0]*mask_w.unsqueeze(0).unsqueeze(2) + self.weight[1]*mask_d_w
|
191 |
+
|
192 |
+
|
193 |
+
geo_prior = ((sin, cos), (mask_h, mask_w))
|
194 |
+
|
195 |
+
else:
|
196 |
+
index = torch.arange(HW_tuple[0]*HW_tuple[1]).to(self.decay)
|
197 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
198 |
+
sin = sin.reshape(HW_tuple[0], HW_tuple[1], -1)
|
199 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
200 |
+
cos = cos.reshape(HW_tuple[0], HW_tuple[1], -1)
|
201 |
+
mask = self.generate_pos_decay(HW_tuple[0], HW_tuple[1])
|
202 |
+
|
203 |
+
mask_d = self.generate_depth_decay(HW_tuple[0], HW_tuple[1], depth_map)
|
204 |
+
mask = (self.weight[0]*mask+self.weight[1]*mask_d)
|
205 |
+
|
206 |
+
geo_prior = ((sin, cos), mask)
|
207 |
+
|
208 |
+
return geo_prior
|
209 |
+
|
210 |
+
class Decomposed_GSA(nn.Module):
|
211 |
+
|
212 |
+
def __init__(self, embed_dim, num_heads, value_factor=1):
|
213 |
+
super().__init__()
|
214 |
+
self.factor = value_factor
|
215 |
+
self.embed_dim = embed_dim
|
216 |
+
self.num_heads = num_heads
|
217 |
+
self.head_dim = self.embed_dim * self.factor // num_heads
|
218 |
+
self.key_dim = self.embed_dim // num_heads
|
219 |
+
self.scaling = self.key_dim ** -0.5
|
220 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
221 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
222 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
|
223 |
+
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
|
224 |
+
|
225 |
+
self.out_proj = nn.Linear(embed_dim*self.factor, embed_dim, bias=True)
|
226 |
+
self.reset_parameters()
|
227 |
+
|
228 |
+
def forward(self, x: torch.Tensor, rel_pos, split_or_not=False):
|
229 |
+
|
230 |
+
bsz, h, w, _ = x.size()
|
231 |
+
|
232 |
+
(sin, cos), (mask_h, mask_w) = rel_pos
|
233 |
+
|
234 |
+
q = self.q_proj(x)
|
235 |
+
k = self.k_proj(x)
|
236 |
+
v = self.v_proj(x)
|
237 |
+
lepe = self.lepe(v)
|
238 |
+
|
239 |
+
k = k * self.scaling
|
240 |
+
q = q.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) #(b n h w d1)
|
241 |
+
k = k.view(bsz, h, w, self.num_heads, self.key_dim).permute(0, 3, 1, 2, 4) #(b n h w d1)
|
242 |
+
qr = angle_transform(q, sin, cos)
|
243 |
+
kr = angle_transform(k, sin, cos)
|
244 |
+
|
245 |
+
qr_w = qr.transpose(1, 2)
|
246 |
+
kr_w = kr.transpose(1, 2)
|
247 |
+
v = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 1, 3, 2, 4)
|
248 |
+
|
249 |
+
qk_mat_w = qr_w @ kr_w.transpose(-1, -2)
|
250 |
+
qk_mat_w = qk_mat_w + mask_w.transpose(1,2)
|
251 |
+
qk_mat_w = torch.softmax(qk_mat_w, -1)
|
252 |
+
v = torch.matmul(qk_mat_w, v)
|
253 |
+
|
254 |
+
|
255 |
+
qr_h = qr.permute(0, 3, 1, 2, 4)
|
256 |
+
kr_h = kr.permute(0, 3, 1, 2, 4)
|
257 |
+
v = v.permute(0, 3, 2, 1, 4)
|
258 |
+
|
259 |
+
qk_mat_h = qr_h @ kr_h.transpose(-1, -2)
|
260 |
+
qk_mat_h = qk_mat_h + mask_h.transpose(1,2)
|
261 |
+
qk_mat_h = torch.softmax(qk_mat_h, -1)
|
262 |
+
output = torch.matmul(qk_mat_h, v)
|
263 |
+
|
264 |
+
output = output.permute(0, 3, 1, 2, 4).flatten(-2, -1)
|
265 |
+
output = output + lepe
|
266 |
+
output = self.out_proj(output)
|
267 |
+
return output
|
268 |
+
|
269 |
+
def reset_parameters(self):
|
270 |
+
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
|
271 |
+
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
|
272 |
+
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
|
273 |
+
nn.init.xavier_normal_(self.out_proj.weight)
|
274 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
275 |
+
|
276 |
+
class Full_GSA(nn.Module):
|
277 |
+
|
278 |
+
def __init__(self, embed_dim, num_heads, value_factor=1):
|
279 |
+
super().__init__()
|
280 |
+
self.factor = value_factor
|
281 |
+
self.embed_dim = embed_dim
|
282 |
+
self.num_heads = num_heads
|
283 |
+
self.head_dim = self.embed_dim * self.factor // num_heads
|
284 |
+
self.key_dim = self.embed_dim // num_heads
|
285 |
+
self.scaling = self.key_dim ** -0.5
|
286 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
287 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=True)
|
288 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim * self.factor, bias=True)
|
289 |
+
self.lepe = DWConv2d(embed_dim, 5, 1, 2)
|
290 |
+
self.out_proj = nn.Linear(embed_dim*self.factor, embed_dim, bias=True)
|
291 |
+
self.reset_parameters()
|
292 |
+
|
293 |
+
def forward(self, x: torch.Tensor, rel_pos, split_or_not=False):
|
294 |
+
'''
|
295 |
+
x: (b h w c)
|
296 |
+
rel_pos: mask: (n l l)
|
297 |
+
'''
|
298 |
+
bsz, h, w, _ = x.size()
|
299 |
+
(sin, cos), mask = rel_pos
|
300 |
+
assert h*w == mask.size(3)
|
301 |
+
q = self.q_proj(x)
|
302 |
+
k = self.k_proj(x)
|
303 |
+
v = self.v_proj(x)
|
304 |
+
lepe = self.lepe(v)
|
305 |
+
|
306 |
+
k = k * self.scaling
|
307 |
+
q = q.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4)
|
308 |
+
k = k.view(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4)
|
309 |
+
qr = angle_transform(q, sin, cos)
|
310 |
+
kr = angle_transform(k, sin, cos)
|
311 |
+
|
312 |
+
qr = qr.flatten(2, 3)
|
313 |
+
kr = kr.flatten(2, 3)
|
314 |
+
vr = v.reshape(bsz, h, w, self.num_heads, -1).permute(0, 3, 1, 2, 4)
|
315 |
+
vr = vr.flatten(2, 3)
|
316 |
+
qk_mat = qr @ kr.transpose(-1, -2)
|
317 |
+
qk_mat = qk_mat + mask
|
318 |
+
qk_mat = torch.softmax(qk_mat, -1)
|
319 |
+
output = torch.matmul(qk_mat, vr)
|
320 |
+
output = output.transpose(1, 2).reshape(bsz, h, w, -1)
|
321 |
+
output = output + lepe
|
322 |
+
output = self.out_proj(output)
|
323 |
+
return output
|
324 |
+
|
325 |
+
def reset_parameters(self):
|
326 |
+
nn.init.xavier_normal_(self.q_proj.weight, gain=2 ** -2.5)
|
327 |
+
nn.init.xavier_normal_(self.k_proj.weight, gain=2 ** -2.5)
|
328 |
+
nn.init.xavier_normal_(self.v_proj.weight, gain=2 ** -2.5)
|
329 |
+
nn.init.xavier_normal_(self.out_proj.weight)
|
330 |
+
nn.init.constant_(self.out_proj.bias, 0.0)
|
331 |
+
|
332 |
+
class FeedForwardNetwork(nn.Module):
|
333 |
+
def __init__(
|
334 |
+
self,
|
335 |
+
embed_dim,
|
336 |
+
ffn_dim,
|
337 |
+
activation_fn=F.gelu,
|
338 |
+
dropout=0.0,
|
339 |
+
activation_dropout=0.0,
|
340 |
+
layernorm_eps=1e-6,
|
341 |
+
subln=False,
|
342 |
+
subconv=True
|
343 |
+
):
|
344 |
+
super().__init__()
|
345 |
+
self.embed_dim = embed_dim
|
346 |
+
self.activation_fn = activation_fn
|
347 |
+
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
|
348 |
+
self.dropout_module = torch.nn.Dropout(dropout)
|
349 |
+
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
|
350 |
+
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
|
351 |
+
self.ffn_layernorm = nn.LayerNorm(ffn_dim, eps=layernorm_eps) if subln else None
|
352 |
+
self.dwconv = DWConv2d(ffn_dim, 3, 1, 1) if subconv else None
|
353 |
+
|
354 |
+
def reset_parameters(self):
|
355 |
+
self.fc1.reset_parameters()
|
356 |
+
self.fc2.reset_parameters()
|
357 |
+
if self.ffn_layernorm is not None:
|
358 |
+
self.ffn_layernorm.reset_parameters()
|
359 |
+
|
360 |
+
def forward(self, x: torch.Tensor):
|
361 |
+
'''
|
362 |
+
input shape: (b h w c)
|
363 |
+
'''
|
364 |
+
x = self.fc1(x)
|
365 |
+
x = self.activation_fn(x)
|
366 |
+
x = self.activation_dropout_module(x)
|
367 |
+
residual = x
|
368 |
+
if self.dwconv is not None:
|
369 |
+
x = self.dwconv(x)
|
370 |
+
if self.ffn_layernorm is not None:
|
371 |
+
x = self.ffn_layernorm(x)
|
372 |
+
x = x + residual
|
373 |
+
x = self.fc2(x)
|
374 |
+
x = self.dropout_module(x)
|
375 |
+
return x
|
376 |
+
|
377 |
+
class RGBD_Block(nn.Module):
|
378 |
+
|
379 |
+
def __init__(self, split_or_not: str, embed_dim: int, num_heads: int, ffn_dim: int, drop_path=0., layerscale=False, layer_init_values=1e-5, init_value=2, heads_range=4):
|
380 |
+
super().__init__()
|
381 |
+
self.layerscale = layerscale
|
382 |
+
self.embed_dim = embed_dim
|
383 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=1e-6)
|
384 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=1e-6)
|
385 |
+
if split_or_not:
|
386 |
+
self.Attention = Decomposed_GSA(embed_dim, num_heads)
|
387 |
+
else:
|
388 |
+
self.Attention = Full_GSA(embed_dim, num_heads)
|
389 |
+
self.drop_path = DropPath(drop_path)
|
390 |
+
# FFN
|
391 |
+
self.ffn = FeedForwardNetwork(embed_dim, ffn_dim)
|
392 |
+
self.cnn_pos_encode = DWConv2d(embed_dim, 3, 1, 1)
|
393 |
+
# the function to generate the geometry prior for the current block
|
394 |
+
self.Geo = GeoPriorGen(embed_dim, num_heads, init_value, heads_range)
|
395 |
+
|
396 |
+
if layerscale:
|
397 |
+
self.gamma_1 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim),requires_grad=True)
|
398 |
+
self.gamma_2 = nn.Parameter(layer_init_values * torch.ones(1, 1, 1, embed_dim),requires_grad=True)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
x: torch.Tensor,
|
403 |
+
x_e: torch.Tensor,
|
404 |
+
split_or_not=False
|
405 |
+
):
|
406 |
+
x = x + self.cnn_pos_encode(x)
|
407 |
+
b, h, w, d = x.size()
|
408 |
+
|
409 |
+
geo_prior = self.Geo((h, w), x_e, split_or_not=split_or_not)
|
410 |
+
if self.layerscale:
|
411 |
+
x = x + self.drop_path(self.gamma_1 * self.Attention(self.layer_norm1(x), geo_prior, split_or_not))
|
412 |
+
x = x + self.drop_path(self.gamma_2 * self.ffn(self.layer_norm2(x)))
|
413 |
+
else:
|
414 |
+
x = x + self.drop_path(self.Attention(self.layer_norm1(x), geo_prior, split_or_not))
|
415 |
+
x = x + self.drop_path(self.ffn(self.layer_norm2(x)))
|
416 |
+
return x
|
417 |
+
|
418 |
+
class BasicLayer(nn.Module):
|
419 |
+
"""
|
420 |
+
A basic RGB-D layer in DFormerv2.
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self, embed_dim, out_dim, depth, num_heads,
|
424 |
+
init_value: float, heads_range: float,
|
425 |
+
ffn_dim=96., drop_path=0., norm_layer=nn.LayerNorm, split_or_not=False,
|
426 |
+
downsample: PatchMerging=None, use_checkpoint=False,
|
427 |
+
layerscale=False, layer_init_values=1e-5):
|
428 |
+
|
429 |
+
super().__init__()
|
430 |
+
self.embed_dim = embed_dim
|
431 |
+
self.depth = depth
|
432 |
+
self.use_checkpoint = use_checkpoint
|
433 |
+
self.split_or_not = split_or_not
|
434 |
+
|
435 |
+
# build blocks
|
436 |
+
self.blocks = nn.ModuleList([
|
437 |
+
RGBD_Block(split_or_not, embed_dim, num_heads, ffn_dim,
|
438 |
+
drop_path[i] if isinstance(drop_path, list) else drop_path, layerscale, layer_init_values, init_value=init_value, heads_range=heads_range)
|
439 |
+
for i in range(depth)])
|
440 |
+
|
441 |
+
# patch merging layer
|
442 |
+
if downsample is not None:
|
443 |
+
self.downsample = downsample(dim=embed_dim, out_dim=out_dim, norm_layer=norm_layer)
|
444 |
+
else:
|
445 |
+
self.downsample = None
|
446 |
+
|
447 |
+
def forward(self, x, x_e):
|
448 |
+
b, h, w, d = x.size()
|
449 |
+
for blk in self.blocks:
|
450 |
+
if self.use_checkpoint:
|
451 |
+
x = checkpoint.checkpoint(blk, x=x, x_e=x_e, split_or_not=self.split_or_not)
|
452 |
+
else:
|
453 |
+
x = blk(x, x_e, split_or_not=self.split_or_not)
|
454 |
+
if self.downsample is not None:
|
455 |
+
x_down = self.downsample(x)
|
456 |
+
return x, x_down
|
457 |
+
else:
|
458 |
+
return x, x
|
459 |
+
|
460 |
+
class dformerv2(nn.Module):
|
461 |
+
|
462 |
+
def __init__(self, out_indices=(0, 1, 2, 3),
|
463 |
+
embed_dims=[64, 128, 256, 512], depths=[2, 2, 8, 2], num_heads=[4, 4, 8, 16],
|
464 |
+
init_values=[2, 2, 2, 2], heads_ranges=[4, 4, 6, 6], mlp_ratios=[4, 4, 3, 3], drop_path_rate=0.1, norm_layer=nn.LayerNorm,
|
465 |
+
patch_norm=True, use_checkpoint=False, projection=1024, norm_cfg = None,
|
466 |
+
layerscales=[False, False, False, False], layer_init_values=1e-6, norm_eval=True):
|
467 |
+
super().__init__()
|
468 |
+
self.out_indices = out_indices
|
469 |
+
self.num_layers = len(depths)
|
470 |
+
self.embed_dim = embed_dims[0]
|
471 |
+
self.patch_norm = patch_norm
|
472 |
+
self.num_features = embed_dims[-1]
|
473 |
+
self.mlp_ratios = mlp_ratios
|
474 |
+
self.norm_eval = norm_eval
|
475 |
+
|
476 |
+
# patch embedding
|
477 |
+
self.patch_embed = PatchEmbed(in_chans=3, embed_dim=embed_dims[0],
|
478 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
479 |
+
|
480 |
+
|
481 |
+
# drop path rate
|
482 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
483 |
+
|
484 |
+
# build layers
|
485 |
+
self.layers = nn.ModuleList()
|
486 |
+
|
487 |
+
for i_layer in range(self.num_layers):
|
488 |
+
layer = BasicLayer(
|
489 |
+
embed_dim=embed_dims[i_layer],
|
490 |
+
out_dim=embed_dims[i_layer+1] if (i_layer < self.num_layers - 1) else None,
|
491 |
+
depth=depths[i_layer],
|
492 |
+
num_heads=num_heads[i_layer],
|
493 |
+
init_value=init_values[i_layer],
|
494 |
+
heads_range=heads_ranges[i_layer],
|
495 |
+
ffn_dim=int(mlp_ratios[i_layer]*embed_dims[i_layer]),
|
496 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
497 |
+
norm_layer=norm_layer,
|
498 |
+
split_or_not=(i_layer!=3),
|
499 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
500 |
+
use_checkpoint=use_checkpoint,
|
501 |
+
layerscale=layerscales[i_layer],
|
502 |
+
layer_init_values=layer_init_values
|
503 |
+
)
|
504 |
+
self.layers.append(layer)
|
505 |
+
|
506 |
+
self.extra_norms = nn.ModuleList()
|
507 |
+
for i in range(3):
|
508 |
+
self.extra_norms.append(nn.LayerNorm(embed_dims[i+1]))
|
509 |
+
|
510 |
+
self.apply(self._init_weights)
|
511 |
+
|
512 |
+
def _init_weights(self, m):
|
513 |
+
if isinstance(m, nn.Linear):
|
514 |
+
trunc_normal_(m.weight, std=.02)
|
515 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
516 |
+
nn.init.constant_(m.bias, 0)
|
517 |
+
elif isinstance(m, nn.LayerNorm):
|
518 |
+
try:
|
519 |
+
nn.init.constant_(m.bias, 0)
|
520 |
+
nn.init.constant_(m.weight, 1.0)
|
521 |
+
except:
|
522 |
+
pass
|
523 |
+
|
524 |
+
def init_weights(self, pretrained=None):
|
525 |
+
"""Initialize the weights in backbone.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
pretrained (str, optional): Path to pre-trained weights.
|
529 |
+
Defaults to None.
|
530 |
+
"""
|
531 |
+
|
532 |
+
def _init_weights(m):
|
533 |
+
if isinstance(m, nn.Linear):
|
534 |
+
trunc_normal_(m.weight, std=.02)
|
535 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
536 |
+
nn.init.constant_(m.bias, 0)
|
537 |
+
elif isinstance(m, nn.LayerNorm):
|
538 |
+
nn.init.constant_(m.bias, 0)
|
539 |
+
nn.init.constant_(m.weight, 1.0)
|
540 |
+
|
541 |
+
if isinstance(pretrained, str):
|
542 |
+
self.apply(_init_weights)
|
543 |
+
# logger = get_root_logger()
|
544 |
+
_state_dict = torch.load(pretrained)
|
545 |
+
if 'model' in _state_dict.keys():
|
546 |
+
_state_dict=_state_dict['model']
|
547 |
+
if 'state_dict' in _state_dict.keys():
|
548 |
+
_state_dict=_state_dict['state_dict']
|
549 |
+
state_dict = OrderedDict()
|
550 |
+
|
551 |
+
for k, v in _state_dict.items():
|
552 |
+
if k.startswith('backbone.'):
|
553 |
+
state_dict[k[9:]] = v
|
554 |
+
else:
|
555 |
+
state_dict[k] = v
|
556 |
+
print('load '+pretrained)
|
557 |
+
load_state_dict(self, state_dict, strict=False)
|
558 |
+
# load_checkpoint(self, pretrained, strict=False)
|
559 |
+
# load_checkpoint(self, pretrained, strict=False, logger=logger)
|
560 |
+
elif pretrained is None:
|
561 |
+
self.apply(_init_weights)
|
562 |
+
else:
|
563 |
+
raise TypeError('pretrained must be a str or None')
|
564 |
+
|
565 |
+
@torch.jit.ignore
|
566 |
+
def no_weight_decay(self):
|
567 |
+
return {'absolute_pos_embed'}
|
568 |
+
|
569 |
+
@torch.jit.ignore
|
570 |
+
def no_weight_decay_keywords(self):
|
571 |
+
return {'relative_position_bias_table'}
|
572 |
+
|
573 |
+
def forward(self, x, x_e):
|
574 |
+
# rgb input
|
575 |
+
x = self.patch_embed(x)
|
576 |
+
# depth input
|
577 |
+
x_e = x_e[:,0,:,:].unsqueeze(1)
|
578 |
+
|
579 |
+
outs = []
|
580 |
+
|
581 |
+
for i in range(self.num_layers):
|
582 |
+
layer = self.layers[i]
|
583 |
+
x_out, x = layer(x, x_e)
|
584 |
+
if i in self.out_indices:
|
585 |
+
if i != 0:
|
586 |
+
x_out = self.extra_norms[i-1](x_out)
|
587 |
+
out = x_out.permute(0, 3, 1, 2).contiguous()
|
588 |
+
outs.append(out)
|
589 |
+
|
590 |
+
return tuple(outs)
|
591 |
+
|
592 |
+
|
593 |
+
def train(self, mode=True):
|
594 |
+
"""Convert the model into training mode while keep normalization layer
|
595 |
+
freezed."""
|
596 |
+
super().train(mode)
|
597 |
+
if mode and self.norm_eval:
|
598 |
+
for m in self.modules():
|
599 |
+
# trick: eval have effect on BatchNorm only
|
600 |
+
if isinstance(m, nn.BatchNorm2d):
|
601 |
+
m.eval()
|
602 |
+
|
603 |
+
def DFormerv2_S(pretrained=False, **kwargs):
|
604 |
+
model = dformerv2(embed_dims=[64, 128, 256, 512], depths=[3, 4, 18, 4], num_heads=[4, 4, 8, 16],
|
605 |
+
heads_ranges=[4, 4, 6, 6], **kwargs)
|
606 |
+
return model
|
607 |
+
|
608 |
+
def DFormerv2_B(pretrained=False, **kwargs):
|
609 |
+
model = dformerv2(embed_dims=[80, 160, 320, 512], depths=[4, 8, 25, 8], num_heads=[5, 5, 10, 16],
|
610 |
+
heads_ranges=[5, 5, 6, 6],
|
611 |
+
layerscales=[False, False, True, True],
|
612 |
+
layer_init_values=1e-6, **kwargs)
|
613 |
+
return model
|
614 |
+
|
615 |
+
def DFormerv2_L(pretrained=False, **kwargs):
|
616 |
+
model = dformerv2(embed_dims=[112, 224, 448, 640], depths=[4, 8, 25, 8], num_heads=[7, 7, 14, 20],
|
617 |
+
heads_ranges=[6, 6, 6, 6],
|
618 |
+
layerscales=[False, False, True, True],
|
619 |
+
layer_init_values=1e-6, **kwargs)
|
620 |
+
return model
|
621 |
+
|
622 |
+
|
depth_anything/util/priorgenerate.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from typing import Tuple
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
class GeoPriorGen(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self,weight=[0.5,0.5]):
|
11 |
+
super().__init__()
|
12 |
+
self.weight = weight
|
13 |
+
|
14 |
+
|
15 |
+
def generate_depth_decay(self, H: int, W: int, depth_grid):
|
16 |
+
'''
|
17 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
18 |
+
H, W are the numbers of patches at each column and row
|
19 |
+
'''
|
20 |
+
B,_,H,W = depth_grid.shape
|
21 |
+
grid_d = depth_grid.reshape(B, H*W, 1)
|
22 |
+
mask_d = grid_d[:, :, None, :] - grid_d[:, None, :, :]
|
23 |
+
mask_d = (mask_d.abs()).sum(dim=-1)
|
24 |
+
mask_d = mask_d.unsqueeze(1) * self.decay[None, :, None, None]
|
25 |
+
return mask_d
|
26 |
+
|
27 |
+
def generate_pos_decay(self, H: int, W: int):
|
28 |
+
'''
|
29 |
+
generate 2d decay mask, the result is (HW)*(HW)
|
30 |
+
H, W are the numbers of patches at each column and row
|
31 |
+
'''
|
32 |
+
index_h = torch.arange(H).to(self.decay)
|
33 |
+
index_w = torch.arange(W).to(self.decay)
|
34 |
+
grid = torch.meshgrid([index_h, index_w])
|
35 |
+
grid = torch.stack(grid, dim=-1).reshape(H*W, 2)
|
36 |
+
mask = grid[:, None, :] - grid[None, :, :]
|
37 |
+
mask = (mask.abs()).sum(dim=-1)
|
38 |
+
mask = mask * self.decay[:, None, None]
|
39 |
+
return mask
|
40 |
+
|
41 |
+
def generate_1d_depth_decay(self, H, W, depth_grid):
|
42 |
+
'''
|
43 |
+
generate 1d depth decay mask, the result is l*l
|
44 |
+
'''
|
45 |
+
mask = depth_grid[:, :, :, :, None] - depth_grid[:, :, :, None, :]
|
46 |
+
mask = mask.abs()
|
47 |
+
mask = mask * self.decay[:, None, None, None]
|
48 |
+
assert mask.shape[2:] == (W,H,H)
|
49 |
+
return mask
|
50 |
+
|
51 |
+
|
52 |
+
def generate_1d_decay(self, l: int):
|
53 |
+
'''
|
54 |
+
generate 1d decay mask, the result is l*l
|
55 |
+
'''
|
56 |
+
index = torch.arange(l).to(self.decay)
|
57 |
+
mask = index[:, None] - index[None, :]
|
58 |
+
mask = mask.abs()
|
59 |
+
mask = mask * self.decay[:, None, None]
|
60 |
+
return mask
|
61 |
+
|
62 |
+
def forward(self, HW_tuple: Tuple[int], depth_map, split_or_not=False):
|
63 |
+
'''
|
64 |
+
depth_map: depth patches
|
65 |
+
HW_tuple: (H, W)
|
66 |
+
H * W == l
|
67 |
+
'''
|
68 |
+
depth_map = F.interpolate(depth_map, size=HW_tuple,mode='bilinear',align_corners=False)
|
69 |
+
|
70 |
+
if split_or_not:
|
71 |
+
index = torch.arange(HW_tuple[0]*HW_tuple[1]).to(self.decay)
|
72 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
73 |
+
sin = sin.reshape(HW_tuple[0], HW_tuple[1], -1)
|
74 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
75 |
+
cos = cos.reshape(HW_tuple[0], HW_tuple[1], -1)
|
76 |
+
|
77 |
+
mask_d_h = self.generate_1d_depth_decay(HW_tuple[0], HW_tuple[1], depth_map.transpose(-2,-1))
|
78 |
+
mask_d_w = self.generate_1d_depth_decay(HW_tuple[1], HW_tuple[0], depth_map)
|
79 |
+
|
80 |
+
|
81 |
+
mask_h = self.generate_1d_decay(HW_tuple[0])
|
82 |
+
mask_w = self.generate_1d_decay(HW_tuple[1])
|
83 |
+
|
84 |
+
mask_h = self.weight[0]*mask_h.unsqueeze(0).unsqueeze(2) + self.weight[1]*mask_d_h
|
85 |
+
mask_w = self.weight[0]*mask_w.unsqueeze(0).unsqueeze(2) + self.weight[1]*mask_d_w
|
86 |
+
|
87 |
+
|
88 |
+
geo_prior = ((sin, cos), (mask_h, mask_w))
|
89 |
+
|
90 |
+
else:
|
91 |
+
index = torch.arange(HW_tuple[0]*HW_tuple[1]).to(self.decay)
|
92 |
+
sin = torch.sin(index[:, None] * self.angle[None, :])
|
93 |
+
sin = sin.reshape(HW_tuple[0], HW_tuple[1], -1)
|
94 |
+
cos = torch.cos(index[:, None] * self.angle[None, :])
|
95 |
+
cos = cos.reshape(HW_tuple[0], HW_tuple[1], -1)
|
96 |
+
mask = self.generate_pos_decay(HW_tuple[0], HW_tuple[1])
|
97 |
+
|
98 |
+
mask_d = self.generate_depth_decay(HW_tuple[0], HW_tuple[1], depth_map)
|
99 |
+
mask = (self.weight[0]*mask+self.weight[1]*mask_d)
|
100 |
+
|
101 |
+
geo_prior = ((sin, cos), mask)
|
102 |
+
|
103 |
+
return geo_prior
|
depth_anything/util/transform.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from PIL import Image, ImageOps, ImageFilter
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import cv2
|
9 |
+
import math
|
10 |
+
|
11 |
+
|
12 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
13 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
sample (dict): sample
|
17 |
+
size (tuple): image size
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
tuple: new size
|
21 |
+
"""
|
22 |
+
shape = list(sample["disparity"].shape)
|
23 |
+
|
24 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
25 |
+
return sample
|
26 |
+
|
27 |
+
scale = [0, 0]
|
28 |
+
scale[0] = size[0] / shape[0]
|
29 |
+
scale[1] = size[1] / shape[1]
|
30 |
+
|
31 |
+
scale = max(scale)
|
32 |
+
|
33 |
+
shape[0] = math.ceil(scale * shape[0])
|
34 |
+
shape[1] = math.ceil(scale * shape[1])
|
35 |
+
|
36 |
+
# resize
|
37 |
+
sample["image"] = cv2.resize(
|
38 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
39 |
+
)
|
40 |
+
|
41 |
+
sample["disparity"] = cv2.resize(
|
42 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
43 |
+
)
|
44 |
+
sample["mask"] = cv2.resize(
|
45 |
+
sample["mask"].astype(np.float32),
|
46 |
+
tuple(shape[::-1]),
|
47 |
+
interpolation=cv2.INTER_NEAREST,
|
48 |
+
)
|
49 |
+
sample["mask"] = sample["mask"].astype(bool)
|
50 |
+
|
51 |
+
return tuple(shape)
|
52 |
+
|
53 |
+
|
54 |
+
class Resize(object):
|
55 |
+
"""Resize sample to given size (width, height).
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
width,
|
61 |
+
height,
|
62 |
+
resize_target=True,
|
63 |
+
keep_aspect_ratio=False,
|
64 |
+
ensure_multiple_of=1,
|
65 |
+
resize_method="lower_bound",
|
66 |
+
image_interpolation_method=cv2.INTER_AREA,
|
67 |
+
):
|
68 |
+
"""Init.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
width (int): desired output width
|
72 |
+
height (int): desired output height
|
73 |
+
resize_target (bool, optional):
|
74 |
+
True: Resize the full sample (image, mask, target).
|
75 |
+
False: Resize image only.
|
76 |
+
Defaults to True.
|
77 |
+
keep_aspect_ratio (bool, optional):
|
78 |
+
True: Keep the aspect ratio of the input sample.
|
79 |
+
Output sample might not have the given width and height, and
|
80 |
+
resize behaviour depends on the parameter 'resize_method'.
|
81 |
+
Defaults to False.
|
82 |
+
ensure_multiple_of (int, optional):
|
83 |
+
Output width and height is constrained to be multiple of this parameter.
|
84 |
+
Defaults to 1.
|
85 |
+
resize_method (str, optional):
|
86 |
+
"lower_bound": Output will be at least as large as the given size.
|
87 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
88 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
89 |
+
Defaults to "lower_bound".
|
90 |
+
"""
|
91 |
+
self.__width = width
|
92 |
+
self.__height = height
|
93 |
+
|
94 |
+
self.__resize_target = resize_target
|
95 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
96 |
+
self.__multiple_of = ensure_multiple_of
|
97 |
+
self.__resize_method = resize_method
|
98 |
+
self.__image_interpolation_method = image_interpolation_method
|
99 |
+
|
100 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
101 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
if max_val is not None and y > max_val:
|
104 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
105 |
+
|
106 |
+
if y < min_val:
|
107 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
108 |
+
|
109 |
+
return y
|
110 |
+
|
111 |
+
def get_size(self, width, height):
|
112 |
+
# determine new height and width
|
113 |
+
scale_height = self.__height / height
|
114 |
+
scale_width = self.__width / width
|
115 |
+
|
116 |
+
if self.__keep_aspect_ratio:
|
117 |
+
if self.__resize_method == "lower_bound":
|
118 |
+
# scale such that output size is lower bound
|
119 |
+
if scale_width > scale_height:
|
120 |
+
# fit width
|
121 |
+
scale_height = scale_width
|
122 |
+
else:
|
123 |
+
# fit height
|
124 |
+
scale_width = scale_height
|
125 |
+
elif self.__resize_method == "upper_bound":
|
126 |
+
# scale such that output size is upper bound
|
127 |
+
if scale_width < scale_height:
|
128 |
+
# fit width
|
129 |
+
scale_height = scale_width
|
130 |
+
else:
|
131 |
+
# fit height
|
132 |
+
scale_width = scale_height
|
133 |
+
elif self.__resize_method == "minimal":
|
134 |
+
# scale as least as possbile
|
135 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
136 |
+
# fit width
|
137 |
+
scale_height = scale_width
|
138 |
+
else:
|
139 |
+
# fit height
|
140 |
+
scale_width = scale_height
|
141 |
+
else:
|
142 |
+
raise ValueError(
|
143 |
+
f"resize_method {self.__resize_method} not implemented"
|
144 |
+
)
|
145 |
+
|
146 |
+
if self.__resize_method == "lower_bound":
|
147 |
+
new_height = self.constrain_to_multiple_of(
|
148 |
+
scale_height * height, min_val=self.__height
|
149 |
+
)
|
150 |
+
new_width = self.constrain_to_multiple_of(
|
151 |
+
scale_width * width, min_val=self.__width
|
152 |
+
)
|
153 |
+
elif self.__resize_method == "upper_bound":
|
154 |
+
new_height = self.constrain_to_multiple_of(
|
155 |
+
scale_height * height, max_val=self.__height
|
156 |
+
)
|
157 |
+
new_width = self.constrain_to_multiple_of(
|
158 |
+
scale_width * width, max_val=self.__width
|
159 |
+
)
|
160 |
+
elif self.__resize_method == "minimal":
|
161 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
162 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
163 |
+
else:
|
164 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
165 |
+
|
166 |
+
return (new_width, new_height)
|
167 |
+
|
168 |
+
def __call__(self, sample):
|
169 |
+
width, height = self.get_size(
|
170 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
171 |
+
)
|
172 |
+
|
173 |
+
# resize sample
|
174 |
+
sample["image"] = cv2.resize(
|
175 |
+
sample["image"],
|
176 |
+
(width, height),
|
177 |
+
interpolation=self.__image_interpolation_method,
|
178 |
+
)
|
179 |
+
|
180 |
+
if self.__resize_target:
|
181 |
+
if "disparity" in sample:
|
182 |
+
sample["disparity"] = cv2.resize(
|
183 |
+
sample["disparity"],
|
184 |
+
(width, height),
|
185 |
+
interpolation=cv2.INTER_NEAREST,
|
186 |
+
)
|
187 |
+
|
188 |
+
if "depth" in sample:
|
189 |
+
sample["depth"] = cv2.resize(
|
190 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
191 |
+
)
|
192 |
+
|
193 |
+
if "semseg_mask" in sample:
|
194 |
+
# sample["semseg_mask"] = cv2.resize(
|
195 |
+
# sample["semseg_mask"], (width, height), interpolation=cv2.INTER_NEAREST
|
196 |
+
# )
|
197 |
+
sample["semseg_mask"] = F.interpolate(torch.from_numpy(sample["semseg_mask"]).float()[None, None, ...], (height, width), mode='nearest').numpy()[0, 0]
|
198 |
+
|
199 |
+
if "mask" in sample:
|
200 |
+
sample["mask"] = cv2.resize(
|
201 |
+
sample["mask"].astype(np.float32),
|
202 |
+
(width, height),
|
203 |
+
interpolation=cv2.INTER_NEAREST,
|
204 |
+
)
|
205 |
+
# sample["mask"] = sample["mask"].astype(bool)
|
206 |
+
|
207 |
+
# print(sample['image'].shape, sample['depth'].shape)
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class NormalizeImage(object):
|
212 |
+
"""Normlize image by given mean and std.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self, mean, std):
|
216 |
+
self.__mean = mean
|
217 |
+
self.__std = std
|
218 |
+
|
219 |
+
def __call__(self, sample):
|
220 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
221 |
+
|
222 |
+
return sample
|
223 |
+
|
224 |
+
|
225 |
+
class PrepareForNet(object):
|
226 |
+
"""Prepare sample for usage as network input.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self):
|
230 |
+
pass
|
231 |
+
|
232 |
+
def __call__(self, sample):
|
233 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
234 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
235 |
+
|
236 |
+
if "mask" in sample:
|
237 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
238 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
239 |
+
|
240 |
+
if "depth" in sample:
|
241 |
+
depth = sample["depth"].astype(np.float32)
|
242 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
243 |
+
|
244 |
+
if "semseg_mask" in sample:
|
245 |
+
sample["semseg_mask"] = sample["semseg_mask"].astype(np.float32)
|
246 |
+
sample["semseg_mask"] = np.ascontiguousarray(sample["semseg_mask"])
|
247 |
+
|
248 |
+
return sample
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
torch==2.3.0
|
3 |
+
torchvision==0.18.0
|
4 |
+
torchaudio==2.3.0
|
5 |
+
numpy==1.26.4
|
6 |
+
opencv-python==4.9.0.80
|
7 |
+
Pillow==10.3.0
|
8 |
+
matplotlib==3.8.4
|
9 |
+
scikit-image==0.24.0
|
10 |
+
scikit-learn==1.6.1
|
11 |
+
pandas==2.2.3
|
12 |
+
scipy==1.13.0
|
13 |
+
tqdm==4.66.4
|
14 |
+
PyYAML==6.0.1
|
15 |
+
tensorboardX==2.6.2.2
|
16 |
+
transformers==4.39.0
|
toyset/1.png
ADDED
![]() |
Git LFS Details
|
toyset/2.png
ADDED
![]() |
Git LFS Details
|
toyset/3.png
ADDED
![]() |
Git LFS Details
|
toyset/4.png
ADDED
![]() |
Git LFS Details
|
toyset/5.png
ADDED
![]() |
Git LFS Details
|
toyset/good.png
ADDED
![]() |
Git LFS Details
|
util/__pycache__/dist_helper.cpython-39.pyc
ADDED
Binary file (813 Bytes). View file
|
|
util/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (3.57 kB). View file
|
|
util/__pycache__/visualize_utils.cpython-39.pyc
ADDED
Binary file (4.52 kB). View file
|
|
util/dist_helper.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
def setup_distributed(backend="nccl", port=None):
|
9 |
+
"""AdaHessian Optimizer
|
10 |
+
Lifted from https://github.com/BIGBALLON/distribuuuu/blob/master/distribuuuu/utils.py
|
11 |
+
Originally licensed MIT, Copyright (c) 2020 Wei Li
|
12 |
+
"""
|
13 |
+
num_gpus = torch.cuda.device_count()
|
14 |
+
rank = int(os.environ["RANK"])
|
15 |
+
world_size = int(os.environ["WORLD_SIZE"])
|
16 |
+
|
17 |
+
torch.cuda.set_device(rank % num_gpus)
|
18 |
+
|
19 |
+
dist.init_process_group(
|
20 |
+
backend=backend,
|
21 |
+
world_size=world_size,
|
22 |
+
rank=rank,
|
23 |
+
)
|
24 |
+
return rank, world_size
|
util/utils.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
|
5 |
+
|
6 |
+
def count_params(model):
|
7 |
+
param_num = sum(p.numel() for p in model.parameters())
|
8 |
+
return param_num / 1e6
|
9 |
+
|
10 |
+
|
11 |
+
def color_map(dataset='pascal'):
|
12 |
+
cmap = np.zeros((256, 3), dtype='uint8')
|
13 |
+
|
14 |
+
if dataset == 'pascal' or dataset == 'coco':
|
15 |
+
def bitget(byteval, idx):
|
16 |
+
return (byteval & (1 << idx)) != 0
|
17 |
+
|
18 |
+
for i in range(256):
|
19 |
+
r = g = b = 0
|
20 |
+
c = i
|
21 |
+
for j in range(8):
|
22 |
+
r = r | (bitget(c, 0) << 7-j)
|
23 |
+
g = g | (bitget(c, 1) << 7-j)
|
24 |
+
b = b | (bitget(c, 2) << 7-j)
|
25 |
+
c = c >> 3
|
26 |
+
|
27 |
+
cmap[i] = np.array([r, g, b])
|
28 |
+
|
29 |
+
elif dataset == 'cityscapes':
|
30 |
+
cmap[0] = np.array([128, 64, 128])
|
31 |
+
cmap[1] = np.array([244, 35, 232])
|
32 |
+
cmap[2] = np.array([70, 70, 70])
|
33 |
+
cmap[3] = np.array([102, 102, 156])
|
34 |
+
cmap[4] = np.array([190, 153, 153])
|
35 |
+
cmap[5] = np.array([153, 153, 153])
|
36 |
+
cmap[6] = np.array([250, 170, 30])
|
37 |
+
cmap[7] = np.array([220, 220, 0])
|
38 |
+
cmap[8] = np.array([107, 142, 35])
|
39 |
+
cmap[9] = np.array([152, 251, 152])
|
40 |
+
cmap[10] = np.array([70, 130, 180])
|
41 |
+
cmap[11] = np.array([220, 20, 60])
|
42 |
+
cmap[12] = np.array([255, 0, 0])
|
43 |
+
cmap[13] = np.array([0, 0, 142])
|
44 |
+
cmap[14] = np.array([0, 0, 70])
|
45 |
+
cmap[15] = np.array([0, 60, 100])
|
46 |
+
cmap[16] = np.array([0, 80, 100])
|
47 |
+
cmap[17] = np.array([0, 0, 230])
|
48 |
+
cmap[18] = np.array([119, 11, 32])
|
49 |
+
|
50 |
+
return cmap
|
51 |
+
|
52 |
+
|
53 |
+
class AverageMeter(object):
|
54 |
+
"""Computes and stores the average and current value"""
|
55 |
+
|
56 |
+
def __init__(self, length=0):
|
57 |
+
self.length = length
|
58 |
+
self.reset()
|
59 |
+
|
60 |
+
def reset(self):
|
61 |
+
if self.length > 0:
|
62 |
+
self.history = []
|
63 |
+
else:
|
64 |
+
self.count = 0
|
65 |
+
self.sum = 0.0
|
66 |
+
self.val = 0.0
|
67 |
+
self.avg = 0.0
|
68 |
+
|
69 |
+
def update(self, val, num=1):
|
70 |
+
if self.length > 0:
|
71 |
+
# currently assert num==1 to avoid bad usage, refine when there are some explict requirements
|
72 |
+
assert num == 1
|
73 |
+
self.history.append(val)
|
74 |
+
if len(self.history) > self.length:
|
75 |
+
del self.history[0]
|
76 |
+
|
77 |
+
self.val = self.history[-1]
|
78 |
+
self.avg = np.mean(self.history)
|
79 |
+
else:
|
80 |
+
self.val = val
|
81 |
+
self.sum += val * num
|
82 |
+
self.count += num
|
83 |
+
self.avg = self.sum / self.count
|
84 |
+
|
85 |
+
|
86 |
+
logs = set()
|
87 |
+
|
88 |
+
|
89 |
+
def init_log(name, level=logging.INFO):
|
90 |
+
if (name, level) in logs:
|
91 |
+
return
|
92 |
+
logs.add((name, level))
|
93 |
+
logger = logging.getLogger(name)
|
94 |
+
logger.setLevel(level)
|
95 |
+
ch = logging.StreamHandler()
|
96 |
+
ch.setLevel(level)
|
97 |
+
if "SLURM_PROCID" in os.environ:
|
98 |
+
rank = int(os.environ["SLURM_PROCID"])
|
99 |
+
logger.addFilter(lambda record: rank == 0)
|
100 |
+
else:
|
101 |
+
rank = 0
|
102 |
+
format_str = "[%(asctime)s][%(levelname)8s] %(message)s"
|
103 |
+
formatter = logging.Formatter(format_str)
|
104 |
+
ch.setFormatter(formatter)
|
105 |
+
logger.addHandler(ch)
|
106 |
+
return logger
|
util/visualize_utils.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import torch
|
5 |
+
|
6 |
+
def visualize_geo_prior(img, geo_prior, save_path, batch_idx=0, point_coords=None, normalize=True, alpha=0.6):
|
7 |
+
"""
|
8 |
+
Visualize geometric prior matrix and overlay the result on the original image
|
9 |
+
Args:
|
10 |
+
img: Original image tensor [B,C,H,W]
|
11 |
+
geo_prior: Geometric prior tensor with shape [B,HW,HW]
|
12 |
+
save_path: Save path
|
13 |
+
batch_idx: Batch index to visualize
|
14 |
+
point_coords: Reference point coordinates in format (h, w). If None, center point will be used
|
15 |
+
normalize: Whether to normalize the display result
|
16 |
+
alpha: Heatmap transparency, 0.0 means completely transparent, 1.0 means completely opaque
|
17 |
+
"""
|
18 |
+
B, HW, _ = geo_prior.shape
|
19 |
+
H = int(np.sqrt(HW))
|
20 |
+
W = H
|
21 |
+
geo_prior_single = geo_prior[batch_idx] # [HW,HW]
|
22 |
+
|
23 |
+
if point_coords is None:
|
24 |
+
center_h, center_w = H // 2, W // 2
|
25 |
+
point_idx = center_h * W + center_w
|
26 |
+
else:
|
27 |
+
h, w = point_coords
|
28 |
+
point_idx = h * W + w
|
29 |
+
relation = geo_prior_single[point_idx] # [HW]
|
30 |
+
relation_map = relation.reshape(H, W)
|
31 |
+
relation_np = relation_map.detach().cpu().numpy()
|
32 |
+
|
33 |
+
if normalize:
|
34 |
+
relation_np = (relation_np - relation_np.min()) / (relation_np.max() - relation_np.min() + 1e-6)
|
35 |
+
|
36 |
+
orig_img = img[batch_idx].detach().cpu().numpy()
|
37 |
+
orig_img = np.transpose(orig_img, (1, 2, 0))
|
38 |
+
mean = np.array([0.485, 0.456, 0.406])
|
39 |
+
std = np.array([0.229, 0.224, 0.225])
|
40 |
+
orig_img = std * orig_img + mean
|
41 |
+
orig_img = np.clip(orig_img * 255, 0, 255).astype(np.uint8)
|
42 |
+
orig_img = cv2.cvtColor(orig_img, cv2.COLOR_RGB2BGR)
|
43 |
+
|
44 |
+
orig_h, orig_w = orig_img.shape[:2]
|
45 |
+
|
46 |
+
colored_map = cv2.applyColorMap((relation_np * 255).astype(np.uint8), cv2.COLORMAP_RAINBOW)
|
47 |
+
colored_map = cv2.resize(colored_map, (orig_w, orig_h), interpolation=cv2.INTER_LINEAR)
|
48 |
+
|
49 |
+
overlay = cv2.addWeighted(orig_img, 1-alpha, colored_map, alpha, 0)
|
50 |
+
|
51 |
+
if point_coords is None:
|
52 |
+
center_w_orig = int(center_w * orig_w / W)
|
53 |
+
center_h_orig = int(center_h * orig_h / H)
|
54 |
+
cv2.drawMarker(overlay, (center_w_orig, center_h_orig), (255, 255, 255), cv2.MARKER_CROSS, 20, 2)
|
55 |
+
else:
|
56 |
+
w_orig = int(w * orig_w / W)
|
57 |
+
h_orig = int(h * orig_h / H)
|
58 |
+
cv2.drawMarker(overlay, (w_orig, h_orig), (255, 255, 255), cv2.MARKER_CROSS, 20, 2)
|
59 |
+
|
60 |
+
cv2.imwrite(save_path.replace('.png', '_overlay.png'), overlay)
|
61 |
+
|
62 |
+
colored_map = cv2.applyColorMap((relation_np * 255).astype(np.uint8), cv2.COLORMAP_RAINBOW)
|
63 |
+
cv2.imwrite(save_path.replace('.png', '_heatmap.png'), colored_map)
|
64 |
+
cv2.imwrite(save_path.replace('.png', '_original.png'), orig_img)
|
65 |
+
|
66 |
+
plt.figure(figsize=(10, 8))
|
67 |
+
plt.imshow(relation_np, cmap='rainbow')
|
68 |
+
plt.colorbar(label='Geometric Prior Strength')
|
69 |
+
|
70 |
+
if point_coords is None:
|
71 |
+
plt.plot(center_w, center_h, 'w*', markersize=10)
|
72 |
+
else:
|
73 |
+
plt.plot(w, h, 'w*', markersize=10)
|
74 |
+
|
75 |
+
plt.title(f'Geometric Prior Visualization (Ref Point: {"center" if point_coords is None else f"({point_coords[0]}, {point_coords[1]})"})')
|
76 |
+
plt.savefig(save_path)
|
77 |
+
plt.close()
|
78 |
+
|
79 |
+
return relation_map
|
80 |
+
|
81 |
+
|
82 |
+
def save_feature_visualization(feature_map, save_path):
|
83 |
+
"""
|
84 |
+
Visualize feature map by averaging all feature maps into one image and resize to 518*518
|
85 |
+
Args:
|
86 |
+
feature_map: feature map tensor with shape [C,H,W]
|
87 |
+
save_path: save path
|
88 |
+
"""
|
89 |
+
|
90 |
+
if len(feature_map.shape) == 4:
|
91 |
+
feature_map = feature_map.squeeze(0)
|
92 |
+
mean_feature = torch.mean(feature_map, dim=0).detach().cpu().numpy()
|
93 |
+
mean_feature = (mean_feature - mean_feature.min()) / (mean_feature.max() - mean_feature.min() + 1e-6)
|
94 |
+
mean_feature = (mean_feature * 255).astype(np.uint8)
|
95 |
+
mean_feature = cv2.resize(mean_feature, (518, 518), interpolation=cv2.INTER_LINEAR)
|
96 |
+
|
97 |
+
colored_feature = cv2.applyColorMap(mean_feature, cv2.COLORMAP_VIRIDIS)
|
98 |
+
cv2.imwrite(save_path, colored_feature)
|
99 |
+
|
100 |
+
def save_depth_visualization(depth_map, filename):
|
101 |
+
"""
|
102 |
+
Save depth map visualization as a colored image.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
depth_map (torch.Tensor): Depth map tensor with shape [H, W] or [B, H, W]
|
106 |
+
filename (str): Output file path for the visualization
|
107 |
+
"""
|
108 |
+
depth_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 255.0
|
109 |
+
depth_norm = depth_norm.detach().cpu().numpy().astype(np.uint8)
|
110 |
+
colored_depth = cv2.applyColorMap(depth_norm, cv2.COLORMAP_INFERNO)
|
111 |
+
cv2.imwrite(filename, colored_depth)
|
112 |
+
|
113 |
+
def save_image(img_tensor, filename):
|
114 |
+
"""
|
115 |
+
Save image tensor as a BGR image file.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
img_tensor (torch.Tensor): Image tensor with shape [C, H, W] or [B, C, H, W]
|
119 |
+
filename (str): Output file path for the image
|
120 |
+
"""
|
121 |
+
img = img_tensor.detach().cpu().numpy()
|
122 |
+
|
123 |
+
if img.shape[0] == 3:
|
124 |
+
img = np.transpose(img, (1, 2, 0))
|
125 |
+
mean = np.array([0.485, 0.456, 0.406])
|
126 |
+
std = np.array([0.229, 0.224, 0.225])
|
127 |
+
img = std * img + mean
|
128 |
+
img = np.clip(img * 255, 0, 255).astype(np.uint8)
|
129 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
130 |
+
cv2.imwrite(filename, img)
|