Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -111,6 +111,10 @@ print("Model loaded successfully!")
|
|
111 |
def predict_depth(input_image, colormap_choice):
|
112 |
"""Main depth prediction function"""
|
113 |
try:
|
|
|
|
|
|
|
|
|
114 |
image_tensor, original_size = preprocess_image(input_image)
|
115 |
|
116 |
if torch.cuda.is_available():
|
@@ -132,31 +136,55 @@ def predict_depth(input_image, colormap_choice):
|
|
132 |
return None
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
135 |
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
|
136 |
gr.Markdown("""
|
137 |
# π Depth Anything AC - Depth Estimation Demo
|
138 |
|
139 |
-
Upload an image
|
140 |
|
141 |
## How to Use
|
142 |
-
1. Click the upload area to select an image
|
143 |
-
2.
|
144 |
-
3.
|
145 |
-
4.
|
|
|
146 |
""")
|
147 |
|
148 |
with gr.Row():
|
149 |
-
with gr.Column():
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
label="Upload Image",
|
152 |
type="pil",
|
153 |
-
height=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
|
156 |
colormap_choice = gr.Dropdown(
|
157 |
choices=["Spectral", "Inferno", "Gray"],
|
158 |
value="Spectral",
|
159 |
-
label="Colormap"
|
160 |
)
|
161 |
|
162 |
submit_btn = gr.Button(
|
@@ -165,38 +193,66 @@ with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.theme
|
|
165 |
size="lg"
|
166 |
)
|
167 |
|
168 |
-
with gr.Column():
|
169 |
output_image = gr.Image(
|
170 |
label="Depth Map Result",
|
171 |
type="pil",
|
172 |
-
height=
|
173 |
)
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
gr.Examples(
|
176 |
examples=[
|
177 |
["toyset/1.png", "Spectral"],
|
178 |
["toyset/2.png", "Spectral"],
|
179 |
["toyset/good.png", "Spectral"],
|
180 |
] if os.path.exists("toyset") else [],
|
181 |
-
inputs=[
|
182 |
outputs=output_image,
|
183 |
fn=predict_depth,
|
184 |
cache_examples=False,
|
185 |
label="Try these example images"
|
186 |
)
|
187 |
|
|
|
188 |
submit_btn.click(
|
189 |
-
fn=
|
190 |
-
inputs=[
|
191 |
outputs=output_image,
|
192 |
show_progress=True
|
193 |
)
|
194 |
|
195 |
gr.Markdown("""
|
196 |
-
## π
|
197 |
- **Spectral**: Rainbow spectrum with distinct near-far contrast
|
198 |
-
- **Inferno**: Flame spectrum with warm tones
|
199 |
-
- **Gray**:
|
|
|
|
|
|
|
|
|
|
|
200 |
""")
|
201 |
|
202 |
|
|
|
111 |
def predict_depth(input_image, colormap_choice):
|
112 |
"""Main depth prediction function"""
|
113 |
try:
|
114 |
+
# Handle case when no image is provided
|
115 |
+
if input_image is None:
|
116 |
+
return None
|
117 |
+
|
118 |
image_tensor, original_size = preprocess_image(input_image)
|
119 |
|
120 |
if torch.cuda.is_available():
|
|
|
136 |
return None
|
137 |
|
138 |
|
139 |
+
def capture_and_predict(camera_image, colormap_choice):
|
140 |
+
"""Capture image from camera and predict depth"""
|
141 |
+
return predict_depth(camera_image, colormap_choice)
|
142 |
+
|
143 |
+
|
144 |
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft()) as demo:
|
145 |
gr.Markdown("""
|
146 |
# π Depth Anything AC - Depth Estimation Demo
|
147 |
|
148 |
+
Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
|
149 |
|
150 |
## How to Use
|
151 |
+
1. **Upload Mode**: Click the upload area to select an image file
|
152 |
+
2. **Camera Mode**: Use your camera to capture a live image
|
153 |
+
3. Choose your preferred colormap style
|
154 |
+
4. Click the "Generate Depth Map" button
|
155 |
+
5. View the results and download
|
156 |
""")
|
157 |
|
158 |
with gr.Row():
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
# Input source selection
|
161 |
+
input_source = gr.Radio(
|
162 |
+
choices=["Upload Image", "Use Camera"],
|
163 |
+
value="Upload Image",
|
164 |
+
label="Input Source"
|
165 |
+
)
|
166 |
+
|
167 |
+
# Upload image component
|
168 |
+
upload_image = gr.Image(
|
169 |
label="Upload Image",
|
170 |
type="pil",
|
171 |
+
height=450,
|
172 |
+
visible=True
|
173 |
+
)
|
174 |
+
|
175 |
+
# Camera component
|
176 |
+
camera_image = gr.Image(
|
177 |
+
label="Camera Input",
|
178 |
+
type="pil",
|
179 |
+
source="webcam",
|
180 |
+
height=450,
|
181 |
+
visible=False
|
182 |
)
|
183 |
|
184 |
colormap_choice = gr.Dropdown(
|
185 |
choices=["Spectral", "Inferno", "Gray"],
|
186 |
value="Spectral",
|
187 |
+
label="Colormap Style"
|
188 |
)
|
189 |
|
190 |
submit_btn = gr.Button(
|
|
|
193 |
size="lg"
|
194 |
)
|
195 |
|
196 |
+
with gr.Column(scale=1):
|
197 |
output_image = gr.Image(
|
198 |
label="Depth Map Result",
|
199 |
type="pil",
|
200 |
+
height=450
|
201 |
)
|
202 |
|
203 |
+
# Function to switch between upload and camera input
|
204 |
+
def switch_input_source(source):
|
205 |
+
if source == "Upload Image":
|
206 |
+
return gr.update(visible=True), gr.update(visible=False)
|
207 |
+
else:
|
208 |
+
return gr.update(visible=False), gr.update(visible=True)
|
209 |
+
|
210 |
+
# Update visibility based on input source selection
|
211 |
+
input_source.change(
|
212 |
+
fn=switch_input_source,
|
213 |
+
inputs=[input_source],
|
214 |
+
outputs=[upload_image, camera_image]
|
215 |
+
)
|
216 |
+
|
217 |
+
# Function to handle both input sources
|
218 |
+
def handle_prediction(input_source, upload_img, camera_img, colormap):
|
219 |
+
if input_source == "Upload Image":
|
220 |
+
return predict_depth(upload_img, colormap)
|
221 |
+
else:
|
222 |
+
return predict_depth(camera_img, colormap)
|
223 |
+
|
224 |
+
# Examples section
|
225 |
gr.Examples(
|
226 |
examples=[
|
227 |
["toyset/1.png", "Spectral"],
|
228 |
["toyset/2.png", "Spectral"],
|
229 |
["toyset/good.png", "Spectral"],
|
230 |
] if os.path.exists("toyset") else [],
|
231 |
+
inputs=[upload_image, colormap_choice],
|
232 |
outputs=output_image,
|
233 |
fn=predict_depth,
|
234 |
cache_examples=False,
|
235 |
label="Try these example images"
|
236 |
)
|
237 |
|
238 |
+
# Submit button click handler
|
239 |
submit_btn.click(
|
240 |
+
fn=handle_prediction,
|
241 |
+
inputs=[input_source, upload_image, camera_image, colormap_choice],
|
242 |
outputs=output_image,
|
243 |
show_progress=True
|
244 |
)
|
245 |
|
246 |
gr.Markdown("""
|
247 |
+
## π Color Map Descriptions
|
248 |
- **Spectral**: Rainbow spectrum with distinct near-far contrast
|
249 |
+
- **Inferno**: Flame spectrum with warm tones
|
250 |
+
- **Gray**: Classic grayscale depth representation
|
251 |
+
|
252 |
+
## π· Camera Tips
|
253 |
+
- Make sure to allow camera access when prompted
|
254 |
+
- Click the camera button to capture the current frame
|
255 |
+
- The captured image will be used as input for depth estimation
|
256 |
""")
|
257 |
|
258 |
|