Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,15 @@ def normalize_depth(disparity_tensor):
|
|
20 |
return normalized_disparity
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
|
24 |
"""Load trained depth estimation model"""
|
25 |
model_configs = {
|
@@ -44,16 +53,26 @@ def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vit
|
|
44 |
|
45 |
|
46 |
def preprocess_image(image, target_size=518):
|
47 |
-
"""Preprocess input image"""
|
48 |
-
if isinstance(image,
|
|
|
|
|
|
|
|
|
|
|
49 |
image = np.array(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
if len(image.shape) == 3 and image.shape[2] == 3:
|
52 |
pass
|
53 |
elif len(image.shape) == 3 and image.shape[2] == 4:
|
54 |
image = image[:, :, :3]
|
55 |
|
56 |
-
image = image.astype(np.float32) / 255.0
|
57 |
h, w = image.shape[:2]
|
58 |
scale = target_size / min(h, w)
|
59 |
new_h, new_w = int(h * scale), int(w * scale)
|
@@ -103,100 +122,321 @@ def create_colored_depth_map(depth, colormap='spectral'):
|
|
103 |
return depth_colored
|
104 |
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
print("Model loaded successfully!")
|
109 |
-
|
110 |
-
|
111 |
-
def predict_depth(input_image, colormap_choice):
|
112 |
-
"""Main depth prediction function"""
|
113 |
try:
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
image_tensor = image_tensor.cuda()
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
depth_tensor = normalize_depth(disparity_tensor)
|
123 |
|
124 |
-
|
|
|
125 |
|
126 |
-
|
|
|
|
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
except Exception as e:
|
131 |
print(f"Error during inference: {str(e)}")
|
132 |
return None
|
133 |
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
gr.Markdown("""
|
137 |
# π Depth Anything AC - Depth Estimation Demo
|
138 |
|
139 |
-
Upload an image
|
140 |
|
141 |
## How to Use
|
142 |
-
1. Click the upload area to select an image
|
143 |
-
2.
|
144 |
-
3.
|
145 |
-
4.
|
|
|
146 |
""")
|
147 |
|
148 |
with gr.Row():
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
)
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
160 |
)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
166 |
)
|
167 |
|
168 |
-
with gr.Column():
|
169 |
output_image = gr.Image(
|
170 |
-
label="Depth Map Result",
|
171 |
type="pil",
|
172 |
-
height=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
)
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
label="Try these example images"
|
186 |
)
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
submit_btn.click(
|
189 |
-
fn=
|
190 |
-
inputs=[
|
191 |
-
outputs=output_image,
|
192 |
show_progress=True
|
193 |
)
|
194 |
|
195 |
gr.Markdown("""
|
196 |
-
## π
|
197 |
-
- **Spectral**: Rainbow spectrum with
|
198 |
-
- **Inferno**:
|
199 |
-
- **Gray**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
""")
|
201 |
|
202 |
|
|
|
20 |
return normalized_disparity
|
21 |
|
22 |
|
23 |
+
def is_video_file(filepath):
|
24 |
+
"""Check if the given file is a video file based on its extension"""
|
25 |
+
if filepath is None:
|
26 |
+
return False
|
27 |
+
video_extensions = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm', '.m4v']
|
28 |
+
_, ext = os.path.splitext(filepath.lower())
|
29 |
+
return ext in video_extensions
|
30 |
+
|
31 |
+
|
32 |
def load_model(model_path='checkpoints/depth_anything_AC_vits.pth', encoder='vits'):
|
33 |
"""Load trained depth estimation model"""
|
34 |
model_configs = {
|
|
|
53 |
|
54 |
|
55 |
def preprocess_image(image, target_size=518):
|
56 |
+
"""Preprocess input image (supports both PIL Image and numpy array)"""
|
57 |
+
if isinstance(image, str):
|
58 |
+
raw_image = cv2.imread(image)
|
59 |
+
if raw_image is None:
|
60 |
+
raise ValueError(f"Cannot read image: {image}")
|
61 |
+
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
|
62 |
+
elif isinstance(image, Image.Image):
|
63 |
image = np.array(image)
|
64 |
+
image = image.astype(np.float32) / 255.0
|
65 |
+
elif isinstance(image, np.ndarray):
|
66 |
+
if image.dtype == np.uint8:
|
67 |
+
image = image.astype(np.float32) / 255.0
|
68 |
+
else:
|
69 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
70 |
|
71 |
if len(image.shape) == 3 and image.shape[2] == 3:
|
72 |
pass
|
73 |
elif len(image.shape) == 3 and image.shape[2] == 4:
|
74 |
image = image[:, :, :3]
|
75 |
|
|
|
76 |
h, w = image.shape[:2]
|
77 |
scale = target_size / min(h, w)
|
78 |
new_h, new_w = int(h * scale), int(w * scale)
|
|
|
122 |
return depth_colored
|
123 |
|
124 |
|
125 |
+
def process_video(video_path, colormap_choice, progress=gr.Progress()):
|
126 |
+
"""Process video file for depth estimation"""
|
|
|
|
|
|
|
|
|
|
|
127 |
try:
|
128 |
+
print(f"Processing video: {video_path}")
|
129 |
+
|
130 |
+
cap = cv2.VideoCapture(video_path)
|
131 |
+
if not cap.isOpened():
|
132 |
+
raise ValueError(f"Cannot open video file: {video_path}")
|
133 |
+
|
134 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
135 |
+
input_fps = cap.get(cv2.CAP_PROP_FPS)
|
136 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
137 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
138 |
|
139 |
+
print(f"Video properties: {total_frames} frames, {input_fps} FPS, {width}x{height}")
|
|
|
140 |
|
141 |
+
temp_output = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
142 |
+
output_path = temp_output.name
|
143 |
+
temp_output.close()
|
|
|
144 |
|
145 |
+
fourcc = cv2.VideoWriter.fourcc(*'mp4v')
|
146 |
+
out = cv2.VideoWriter(output_path, fourcc, input_fps, (width, height))
|
147 |
|
148 |
+
if not out.isOpened():
|
149 |
+
cap.release()
|
150 |
+
raise ValueError("Cannot create output video file")
|
151 |
|
152 |
+
frame_count = 0
|
153 |
+
|
154 |
+
try:
|
155 |
+
while True:
|
156 |
+
ret, frame = cap.read()
|
157 |
+
if not ret:
|
158 |
+
break
|
159 |
+
|
160 |
+
frame_count += 1
|
161 |
+
|
162 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
163 |
+
|
164 |
+
try:
|
165 |
+
image_tensor, original_size = preprocess_image(frame_rgb)
|
166 |
+
|
167 |
+
if torch.cuda.is_available():
|
168 |
+
image_tensor = image_tensor.cuda()
|
169 |
+
|
170 |
+
with torch.no_grad():
|
171 |
+
prediction = model(image_tensor)
|
172 |
+
disparity_tensor = prediction['out']
|
173 |
+
depth_tensor = normalize_depth(disparity_tensor)
|
174 |
+
|
175 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
176 |
+
|
177 |
+
if depth is None:
|
178 |
+
if depth_tensor.dim() == 1:
|
179 |
+
h, w = original_size
|
180 |
+
expected_size = h * w
|
181 |
+
if depth_tensor.shape[0] == expected_size:
|
182 |
+
depth_tensor = depth_tensor.view(1, 1, h, w)
|
183 |
+
else:
|
184 |
+
import math
|
185 |
+
side_length = int(math.sqrt(depth_tensor.shape[0]))
|
186 |
+
if side_length * side_length == depth_tensor.shape[0]:
|
187 |
+
depth_tensor = depth_tensor.view(1, 1, side_length, side_length)
|
188 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
189 |
+
|
190 |
+
if depth is None:
|
191 |
+
print(f"Warning: Frame {frame_count} processing failed, using black frame")
|
192 |
+
depth_frame = np.zeros((height, width, 3), dtype=np.uint8)
|
193 |
+
else:
|
194 |
+
if colormap_choice.lower() == 'inferno':
|
195 |
+
depth_frame = cv2.applyColorMap((depth * 255).astype(np.uint8), cv2.COLORMAP_INFERNO)
|
196 |
+
elif colormap_choice.lower() == 'spectral':
|
197 |
+
from matplotlib import cm
|
198 |
+
spectral_cmap = cm.get_cmap('Spectral_r')
|
199 |
+
depth_frame = (spectral_cmap(depth) * 255).astype(np.uint8)
|
200 |
+
depth_frame = depth_frame[:, :, :3]
|
201 |
+
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_RGB2BGR)
|
202 |
+
else:
|
203 |
+
depth_frame = (depth * 255).astype(np.uint8)
|
204 |
+
depth_frame = cv2.cvtColor(depth_frame, cv2.COLOR_GRAY2BGR)
|
205 |
+
|
206 |
+
out.write(depth_frame)
|
207 |
+
|
208 |
+
except Exception as e:
|
209 |
+
print(f"Error processing frame {frame_count}: {str(e)}")
|
210 |
+
black_frame = np.zeros((height, width, 3), dtype=np.uint8)
|
211 |
+
out.write(black_frame)
|
212 |
+
|
213 |
+
progress((frame_count / total_frames), f"Processing progress: {frame_count}/{total_frames} frames")
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
print(f"Unexpected error during video processing: {str(e)}")
|
217 |
+
finally:
|
218 |
+
cap.release()
|
219 |
+
out.release()
|
220 |
+
|
221 |
+
print(f"Video processing completed! Output saved to: {output_path}")
|
222 |
+
return output_path
|
223 |
+
|
224 |
+
except Exception as e:
|
225 |
+
print(f"Video processing failed: {str(e)}")
|
226 |
+
return None
|
227 |
+
|
228 |
+
|
229 |
+
print("Loading model...")
|
230 |
+
model = load_model()
|
231 |
+
print("Model loaded successfully!")
|
232 |
+
|
233 |
+
|
234 |
+
def predict_depth(input_file, colormap_choice):
|
235 |
+
"""Main depth prediction function for both images and videos"""
|
236 |
+
try:
|
237 |
+
if input_file is None:
|
238 |
+
return None, gr.update(visible=False)
|
239 |
+
|
240 |
+
if is_video_file(input_file):
|
241 |
+
output_path = process_video(input_file, colormap_choice)
|
242 |
+
if output_path:
|
243 |
+
return output_path, gr.update(visible=True, value=output_path)
|
244 |
+
else:
|
245 |
+
return None, gr.update(visible=False)
|
246 |
+
else:
|
247 |
+
if isinstance(input_file, str):
|
248 |
+
input_image = Image.open(input_file)
|
249 |
+
else:
|
250 |
+
input_image = input_file
|
251 |
+
|
252 |
+
image_tensor, original_size = preprocess_image(input_image)
|
253 |
+
|
254 |
+
if torch.cuda.is_available():
|
255 |
+
image_tensor = image_tensor.cuda()
|
256 |
+
|
257 |
+
with torch.no_grad():
|
258 |
+
prediction = model(image_tensor)
|
259 |
+
disparity_tensor = prediction['out']
|
260 |
+
depth_tensor = normalize_depth(disparity_tensor)
|
261 |
+
|
262 |
+
depth = postprocess_depth(depth_tensor, original_size)
|
263 |
+
depth_colored = create_colored_depth_map(depth, colormap_choice.lower())
|
264 |
+
|
265 |
+
result = Image.fromarray(depth_colored)
|
266 |
+
|
267 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
|
268 |
+
result.save(temp_file.name)
|
269 |
+
|
270 |
+
return result, gr.update(visible=True, value=temp_file.name)
|
271 |
|
272 |
except Exception as e:
|
273 |
print(f"Error during inference: {str(e)}")
|
274 |
return None
|
275 |
|
276 |
|
277 |
+
def capture_and_predict(camera_image, colormap_choice):
|
278 |
+
"""Capture image from camera and predict depth"""
|
279 |
+
return predict_depth(camera_image, colormap_choice)
|
280 |
+
|
281 |
+
|
282 |
+
with gr.Blocks(title="Depth Anything AC - Depth Estimation Demo", theme=gr.themes.Soft(), css="""
|
283 |
+
.image-container {
|
284 |
+
display: flex !important;
|
285 |
+
align-items: flex-start !important;
|
286 |
+
justify-content: center !important;
|
287 |
+
}
|
288 |
+
.gradio-image {
|
289 |
+
vertical-align: top !important;
|
290 |
+
}
|
291 |
+
""") as demo:
|
292 |
gr.Markdown("""
|
293 |
# π Depth Anything AC - Depth Estimation Demo
|
294 |
|
295 |
+
Upload an image or use your camera to generate corresponding depth maps! Different colors in the depth map represent different distances, allowing you to see the three-dimensional structure of the image.
|
296 |
|
297 |
## How to Use
|
298 |
+
1. **Upload Mode**: Click the upload area to select an image or video file
|
299 |
+
2. **Camera Mode**: Use your camera to capture a live image
|
300 |
+
3. Choose your preferred colormap style
|
301 |
+
4. Click the "Generate Depth Map" button
|
302 |
+
5. View the results and download
|
303 |
""")
|
304 |
|
305 |
with gr.Row():
|
306 |
+
input_source = gr.Radio(
|
307 |
+
choices=["Upload Image", "Use Camera"],
|
308 |
+
value="Upload Image",
|
309 |
+
label="Input Source"
|
310 |
+
)
|
311 |
+
colormap_choice = gr.Dropdown(
|
312 |
+
choices=["Spectral", "Inferno", "Gray"],
|
313 |
+
value="Spectral",
|
314 |
+
label="Colormap Style"
|
315 |
+
)
|
316 |
+
submit_btn = gr.Button(
|
317 |
+
"π― Generate Depth Map",
|
318 |
+
variant="primary",
|
319 |
+
size="lg"
|
320 |
+
)
|
321 |
+
|
322 |
+
with gr.Row():
|
323 |
+
gr.HTML("<h3 style='text-align: center; margin: 10px;'>π· Input Image</h3>")
|
324 |
+
gr.HTML("<h3 style='text-align: center; margin: 10px;'>π Depth Map Result</h3>")
|
325 |
+
|
326 |
+
with gr.Row(equal_height=True):
|
327 |
+
with gr.Column(scale=1):
|
328 |
+
upload_file = gr.File(
|
329 |
+
file_types=["image", "video"],
|
330 |
+
height=450,
|
331 |
+
visible=True,
|
332 |
+
show_label=False,
|
333 |
+
container=False,
|
334 |
+
label="Upload Image or Video"
|
335 |
)
|
336 |
|
337 |
+
# Camera component
|
338 |
+
camera_image = gr.Image(
|
339 |
+
type="pil",
|
340 |
+
sources=["webcam"],
|
341 |
+
height=450,
|
342 |
+
visible=False,
|
343 |
+
show_label=False,
|
344 |
+
container=False
|
345 |
)
|
346 |
|
347 |
+
with gr.Column(scale=1):
|
348 |
+
output_file = gr.File(
|
349 |
+
height=450,
|
350 |
+
show_label=False,
|
351 |
+
container=False,
|
352 |
+
visible=False
|
353 |
)
|
354 |
|
|
|
355 |
output_image = gr.Image(
|
|
|
356 |
type="pil",
|
357 |
+
height=450,
|
358 |
+
show_label=False,
|
359 |
+
container=False,
|
360 |
+
visible=True
|
361 |
+
)
|
362 |
+
|
363 |
+
download_btn = gr.DownloadButton(
|
364 |
+
label="π₯ Download Result",
|
365 |
+
variant="secondary",
|
366 |
+
size="sm",
|
367 |
+
visible=False
|
368 |
)
|
369 |
|
370 |
+
def switch_input_source(source):
|
371 |
+
if source == "Upload Image":
|
372 |
+
return gr.update(visible=True), gr.update(visible=False)
|
373 |
+
else:
|
374 |
+
return gr.update(visible=False), gr.update(visible=True)
|
375 |
+
|
376 |
+
input_source.change(
|
377 |
+
fn=switch_input_source,
|
378 |
+
inputs=[input_source],
|
379 |
+
outputs=[upload_file, camera_image]
|
|
|
380 |
)
|
381 |
|
382 |
+
def handle_prediction(input_source, upload_file_path, camera_img, colormap):
|
383 |
+
if input_source == "Upload Image":
|
384 |
+
if upload_file_path is None:
|
385 |
+
return None, None, gr.update(visible=False), gr.update(visible=False)
|
386 |
+
|
387 |
+
result, download_update = predict_depth(upload_file_path, colormap)
|
388 |
+
|
389 |
+
if isinstance(result, str) and is_video_file(result):
|
390 |
+
return None, result, gr.update(visible=False), download_update
|
391 |
+
else:
|
392 |
+
return result, None, gr.update(visible=True), download_update
|
393 |
+
else:
|
394 |
+
result, download_update = predict_depth(camera_img, colormap)
|
395 |
+
return result, None, gr.update(visible=True), download_update
|
396 |
+
|
397 |
+
example_files = []
|
398 |
+
if os.path.exists("toyset"):
|
399 |
+
for img_file in ["1.png", "2.png", "good.png"]:
|
400 |
+
if os.path.exists(f"toyset/{img_file}"):
|
401 |
+
example_files.append([f"toyset/{img_file}", "Spectral"])
|
402 |
+
|
403 |
+
for vid_file in ["fog_2_processed_1s-6s_1.0x.mp4", "snow_processed_1s-6s_1.0x.mp4"]:
|
404 |
+
if os.path.exists(f"toyset/{vid_file}"):
|
405 |
+
example_files.append([f"toyset/{vid_file}", "Spectral"])
|
406 |
+
|
407 |
+
if example_files:
|
408 |
+
gr.Examples(
|
409 |
+
examples=example_files,
|
410 |
+
inputs=[upload_file, colormap_choice],
|
411 |
+
outputs=[output_image, output_file],
|
412 |
+
fn=lambda file_path, colormap: predict_depth(file_path, colormap),
|
413 |
+
cache_examples=False,
|
414 |
+
label="Try these example files"
|
415 |
+
)
|
416 |
+
|
417 |
submit_btn.click(
|
418 |
+
fn=handle_prediction,
|
419 |
+
inputs=[input_source, upload_file, camera_image, colormap_choice],
|
420 |
+
outputs=[output_image, output_file, output_image, download_btn],
|
421 |
show_progress=True
|
422 |
)
|
423 |
|
424 |
gr.Markdown("""
|
425 |
+
## π Colormap Description
|
426 |
+
- **Spectral**: Rainbow spectrum, with clear contrast between near and far
|
427 |
+
- **Inferno**: Fire spectrum, warm tones
|
428 |
+
- **Gray**: Classic grayscale depth representation
|
429 |
+
|
430 |
+
## π· Camera Usage Tips
|
431 |
+
- Ensure camera access is allowed when prompted
|
432 |
+
- Click the camera button to capture the current frame
|
433 |
+
- The captured image will be used as input for depth estimation
|
434 |
+
|
435 |
+
## π¬ Video Processing Tips
|
436 |
+
- Supports multiple video formats (MP4, AVI, MOV, etc.)
|
437 |
+
- Video processing may take some time, please be patient
|
438 |
+
- Processing progress will be displayed in real-time
|
439 |
+
- The output video will maintain the same frame rate as the input
|
440 |
""")
|
441 |
|
442 |
|