Spaces:
Build error
Build error
Create app.py
Browse filesFramework build 1
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gliner import GLiNER
|
3 |
+
from vllm import LLM, SamplingParams
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
+
import json
|
8 |
+
import torch
|
9 |
+
|
10 |
+
# Load mock legal corpus
|
11 |
+
with open("legal_corpus.json", "r", encoding="utf-8") as f:
|
12 |
+
corpus = json.load(f)
|
13 |
+
documents = [item["text"] for item in corpus]
|
14 |
+
|
15 |
+
# Initialize sentence transformer for embeddings
|
16 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2") # Lightweight embedder
|
17 |
+
embeddings = embedder.encode(documents, convert_to_numpy=True)
|
18 |
+
|
19 |
+
# Initialize FAISS index
|
20 |
+
dimension = embeddings.shape[1]
|
21 |
+
index = faiss.IndexFlatL2(dimension)
|
22 |
+
index.add(embeddings)
|
23 |
+
|
24 |
+
# Initialize GLiNER model
|
25 |
+
gliner_model = GLiNER.from_pretrained("NAMAA-Space/gliner_arabic-v2.1", load_tokenizer=True)
|
26 |
+
|
27 |
+
# Initialize QwQ-32B
|
28 |
+
llm = LLM(
|
29 |
+
model="Qwen/QwQ-32B",
|
30 |
+
quantization="awq",
|
31 |
+
max_model_len=4096,
|
32 |
+
gpu_memory_utilization=0.9
|
33 |
+
)
|
34 |
+
sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
|
35 |
+
|
36 |
+
def retrieve_documents(query, k=2):
|
37 |
+
"""Retrieve top-k relevant documents using FAISS."""
|
38 |
+
query_embedding = embedder.encode([query], convert_to_numpy=True)
|
39 |
+
distances, indices = index.search(query_embedding, k)
|
40 |
+
return [documents[idx] for idx in indices[0]]
|
41 |
+
|
42 |
+
def run_ner(text, entity_types):
|
43 |
+
"""Run NER with gliner_arabic-v2.1."""
|
44 |
+
if not text or not entity_types:
|
45 |
+
return []
|
46 |
+
entity_list = [e.strip() for e in entity_types.split(",")]
|
47 |
+
entities = gliner_model.predict_entities(text, entity_list, threshold=0.5)
|
48 |
+
return [{"text": e["text"], "label": e["label"], "score": round(e["score"], 2)} for e in entities]
|
49 |
+
|
50 |
+
def generate_legal_insight(text, entities, retrieved_docs):
|
51 |
+
"""Generate insight with QwQ-32B using RAG."""
|
52 |
+
entity_str = ", ".join([f"{e['text']} ({e['label']})" for e in entities])
|
53 |
+
context = "\n".join(retrieved_docs)
|
54 |
+
prompt = f"""You are a legal assistant for Arabic law. Using the following context and extracted entities, provide a concise legal insight (e.g., summary or explanation). Ensure the response is grounded in the context and entities.
|
55 |
+
|
56 |
+
Context:
|
57 |
+
{context}
|
58 |
+
|
59 |
+
Entities:
|
60 |
+
{entity_str}
|
61 |
+
|
62 |
+
Input Text:
|
63 |
+
{text}
|
64 |
+
|
65 |
+
Insight:"""
|
66 |
+
outputs = llm.generate([prompt], sampling_params)
|
67 |
+
return outputs[0].outputs[0].text
|
68 |
+
|
69 |
+
def main_interface(text, entity_types):
|
70 |
+
"""Main Gradio interface."""
|
71 |
+
# Run NER
|
72 |
+
ner_result = run_ner(text, entity_types)
|
73 |
+
|
74 |
+
# Retrieve relevant documents
|
75 |
+
retrieved_docs = retrieve_documents(text)
|
76 |
+
|
77 |
+
# Generate legal insight
|
78 |
+
insight = generate_legal_insight(text, ner_result, retrieved_docs)
|
79 |
+
|
80 |
+
return ner_result, retrieved_docs, insight
|
81 |
+
|
82 |
+
# Gradio interface
|
83 |
+
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
84 |
+
gr.Markdown("# Arabic Legal Demo: NER & RAG with GLiNER and QwQ-32B")
|
85 |
+
with gr.Row():
|
86 |
+
text_input = gr.Textbox(label="Arabic Legal Text", lines=5, placeholder="Enter Arabic legal text...")
|
87 |
+
entity_types = gr.Textbox(
|
88 |
+
label="Entity Types (comma-separated)",
|
89 |
+
value="person,law,organization",
|
90 |
+
placeholder="e.g., person,law,organization"
|
91 |
+
)
|
92 |
+
submit_btn = gr.Button("Analyze")
|
93 |
+
ner_output = gr.JSON(label="Extracted Entities")
|
94 |
+
docs_output = gr.Textbox(label="Retrieved Legal Context")
|
95 |
+
insight_output = gr.Textbox(label="Legal Insight")
|
96 |
+
|
97 |
+
submit_btn.click(
|
98 |
+
fn=main_interface,
|
99 |
+
inputs=[text_input, entity_types],
|
100 |
+
outputs=[ner_output, docs_output, insight_output]
|
101 |
+
)
|
102 |
+
|
103 |
+
demo.launch()
|