Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,21 @@
|
|
| 1 |
# π Text Paraphraser | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
from transformers import
|
| 5 |
-
AutoTokenizer,
|
| 6 |
-
AutoModelForSeq2SeqLM,
|
| 7 |
-
pipeline,
|
| 8 |
-
)
|
| 9 |
|
| 10 |
-
# 1οΈβ£
|
| 11 |
MODEL_ID = "Vamsi/T5_Paraphrase_Paws"
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False)
|
| 13 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
| 14 |
|
| 15 |
-
# 2οΈβ£ Create paraphrase pipeline with our slow tokenizer
|
| 16 |
paraphraser = pipeline(
|
| 17 |
"text2text-generation",
|
| 18 |
model=model,
|
| 19 |
tokenizer=tokenizer,
|
| 20 |
-
device=-1,
|
| 21 |
)
|
| 22 |
|
|
|
|
| 23 |
def paraphrase(text: str, num_variations: int):
|
| 24 |
if not text.strip():
|
| 25 |
return []
|
|
@@ -30,10 +26,11 @@ def paraphrase(text: str, num_variations: int):
|
|
| 30 |
num_return_sequences=num_variations,
|
| 31 |
do_sample=True,
|
| 32 |
top_k=120,
|
| 33 |
-
top_p=0.95
|
| 34 |
)
|
| 35 |
return [out["generated_text"].strip() for out in outputs]
|
| 36 |
|
|
|
|
| 37 |
with gr.Blocks(title="π Text Paraphraser") as demo:
|
| 38 |
gr.Markdown(
|
| 39 |
"# π Text Paraphraser\n"
|
|
@@ -55,18 +52,18 @@ with gr.Blocks(title="π Text Paraphraser") as demo:
|
|
| 55 |
output_df = gr.Dataframe(
|
| 56 |
label="Paraphrases",
|
| 57 |
headers=[f"Variant #{i}" for i in range(1, 6)],
|
| 58 |
-
datatype=["str"]*5,
|
| 59 |
interactive=False,
|
| 60 |
row_count=1
|
| 61 |
)
|
| 62 |
|
| 63 |
def format_for_dataframe(results):
|
| 64 |
# Pad out to 5 columns
|
| 65 |
-
variants = results + [""]*(5 - len(results))
|
| 66 |
return [variants]
|
| 67 |
|
| 68 |
run_btn.click(
|
| 69 |
-
fn=lambda
|
| 70 |
inputs=[input_text, variations],
|
| 71 |
outputs=output_df
|
| 72 |
)
|
|
|
|
| 1 |
# π Text Paraphraser | CPU-only HF Space
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# 1οΈβ£ Model & Tokenizer setup
|
| 7 |
MODEL_ID = "Vamsi/T5_Paraphrase_Paws"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False)
|
| 9 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
| 10 |
|
|
|
|
| 11 |
paraphraser = pipeline(
|
| 12 |
"text2text-generation",
|
| 13 |
model=model,
|
| 14 |
tokenizer=tokenizer,
|
| 15 |
+
device=-1, # CPU
|
| 16 |
)
|
| 17 |
|
| 18 |
+
# 2οΈβ£ Paraphrase function
|
| 19 |
def paraphrase(text: str, num_variations: int):
|
| 20 |
if not text.strip():
|
| 21 |
return []
|
|
|
|
| 26 |
num_return_sequences=num_variations,
|
| 27 |
do_sample=True,
|
| 28 |
top_k=120,
|
| 29 |
+
top_p=0.95,
|
| 30 |
)
|
| 31 |
return [out["generated_text"].strip() for out in outputs]
|
| 32 |
|
| 33 |
+
# 3οΈβ£ Gradio UI
|
| 34 |
with gr.Blocks(title="π Text Paraphraser") as demo:
|
| 35 |
gr.Markdown(
|
| 36 |
"# π Text Paraphraser\n"
|
|
|
|
| 52 |
output_df = gr.Dataframe(
|
| 53 |
label="Paraphrases",
|
| 54 |
headers=[f"Variant #{i}" for i in range(1, 6)],
|
| 55 |
+
datatype=["str"] * 5,
|
| 56 |
interactive=False,
|
| 57 |
row_count=1
|
| 58 |
)
|
| 59 |
|
| 60 |
def format_for_dataframe(results):
|
| 61 |
# Pad out to 5 columns
|
| 62 |
+
variants = results + [""] * (5 - len(results))
|
| 63 |
return [variants]
|
| 64 |
|
| 65 |
run_btn.click(
|
| 66 |
+
fn=lambda txt, n: format_for_dataframe(paraphrase(txt, n)),
|
| 67 |
inputs=[input_text, variations],
|
| 68 |
outputs=output_df
|
| 69 |
)
|