ghostai1 commited on
Commit
46ea6ee
·
verified ·
1 Parent(s): bb942f7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -296
README.md CHANGED
@@ -9,346 +9,136 @@ short_description: CX AI LLM
9
  title: Customer Experience Bot Demo emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false
10
 
11
 
12
-
13
-
14
- Customer Experience Bot Demo
15
 
16
  A cutting-edge Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) powered Customer Experience (CX) bot, deployed on Hugging Face Spaces (free tier). Architected with over 5 years of AI expertise since 2020, this demo leverages advanced Natural Language Processing (NLP) pipelines to deliver high-fidelity, multilingual CX solutions for enterprise-grade applications in SaaS, HealthTech, FinTech, and eCommerce. The system showcases robust data preprocessing for call center datasets, integrating state-of-the-art technologies like Pandas for data wrangling, Hugging Face Transformers for embeddings, FAISS for vectorized retrieval, and FastAPI-compatible API design principles for scalable inference.
17
 
18
- Technical Architecture
19
 
20
- Retrieval-Augmented Generation (RAG) Pipeline
21
 
22
  The core of this CX bot is a RAG framework, designed to fuse retrieval and generation for contextually relevant responses. The pipeline employs:
23
 
 
 
 
24
 
 
25
 
 
26
 
27
-
28
- Hugging Face Transformers: Utilizes all-MiniLM-L6-v2, a lightweight Sentence-BERT model (~80MB), fine-tuned for semantic embeddings, to encode call center FAQs into dense vectors. This ensures efficient, high-dimensional representation of query semantics.
29
-
30
-
31
-
32
- FAISS (CPU): Implements a FAISS IndexFlatL2 for similarity search, enabling rapid retrieval of top-k FAQs (default k=2) via L2 distance metrics. FAISS’s CPU optimization ensures free-tier compatibility while maintaining sub-millisecond retrieval latency.
33
-
34
-
35
-
36
- Rule-Based Generation: Bypasses heavy LLMs (e.g., GPT-2) for free-tier constraints, using retrieved FAQ answers directly, achieving a simulated 95% accuracy while minimizing compute overhead.
37
-
38
- Context-Augmented Generation (CAG) Integration
39
-
40
- Building on RAG, the system incorporates CAG principles by enriching retrieved contexts with metadata (e.g., call_id, language) from call center CSVs. This contextual augmentation enhances response relevance, particularly for multilingual CX (e.g., English, Spanish), ensuring the bot adapts to diverse enterprise needs.
41
-
42
- Call Center Data Preprocessing with Pandas
43
 
44
  The bot ingests raw call center CSVs, which are often riddled with junk data (nulls, duplicates, malformed entries). Leveraging Pandas, the preprocessing pipeline:
45
 
 
 
 
 
 
 
 
 
46
 
47
-
48
-
49
-
50
- Data Ingestion: Parses CSVs with pd.read_csv, using io.StringIO for embedded data, with explicit quotechar and escapechar to handle complex strings.
51
-
52
-
53
-
54
- Junk Data Cleanup:
55
-
56
-
57
-
58
-
59
-
60
- Null Handling: Drops rows with missing question or answer using df.dropna().
61
-
62
-
63
-
64
- Duplicate Removal: Eliminates redundant FAQs via df[~df['question'].duplicated()].
65
-
66
-
67
-
68
- Short Entry Filtering: Excludes questions <10 chars or answers <20 chars with df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)].
69
-
70
-
71
-
72
- Malformed Detection: Uses regex ([!?]{2,}|\b(Invalid|N/A)\b) to filter invalid questions.
73
-
74
-
75
-
76
- Standardization: Normalizes text (e.g., mo to month) and fills missing language with en.
77
-
78
-
79
-
80
- Output: Generates cleaned_call_center_faqs.csv for downstream modeling, with detailed cleanup stats (e.g., nulls, duplicates removed).
81
-
82
- Enterprise-Grade Modeling Compatibility
83
 
84
  The cleaned CSV is optimized for:
85
 
 
 
 
86
 
87
-
88
-
89
-
90
- Amazon SageMaker: Ready for training BERT-based models (e.g., bert-base-uncased) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
91
-
92
-
93
-
94
- Azure AI: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
95
-
96
-
97
-
98
- LLM Integration: While not used in this free-tier demo, the cleaned data supports fine-tuning LLMs (e.g., distilgpt2) for generative tasks, leveraging your FastAPI experience for API-driven inference.
99
-
100
- Performance Monitoring and Visualization
101
 
102
  The bot includes a performance monitoring suite:
103
 
 
 
 
 
 
104
 
105
-
106
-
107
-
108
- Latency Tracking: Measures embedding, retrieval, and generation times using time.perf_counter(), reported in milliseconds.
109
-
110
-
111
-
112
- Accuracy Metrics: Simulates retrieval accuracy (95% if FAQs retrieved, 0% otherwise) for demo purposes.
113
-
114
-
115
-
116
- Visualization: Uses Matplotlib and Seaborn to plot a dual-axis chart (rag_plot.png):
117
-
118
-
119
-
120
-
121
-
122
- Bar Chart: Latency (ms) per stage (Embedding, Retrieval, Generation).
123
-
124
-
125
-
126
- Line Chart: Accuracy (%) per stage, with a muted palette for professional aesthetics.
127
-
128
- Gradio Interface for Interactive CX
129
 
130
  The bot is deployed via Gradio, providing a user-friendly interface:
131
 
 
 
 
 
 
 
 
132
 
 
133
 
 
 
 
 
134
 
 
135
 
136
- Input: Text query field for user inputs (e.g., “How do I reset my password?”).
137
-
138
-
139
-
140
- Outputs:
141
-
142
-
143
-
144
-
145
-
146
- Bot response (e.g., “Go to the login page, click ‘Forgot Password,’...”).
147
-
148
-
149
-
150
- Retrieved FAQs with question-answer pairs.
151
-
152
-
153
-
154
- Cleanup stats (e.g., “Cleaned FAQs: 6; removed 4 junk entries”).
155
-
156
-
157
-
158
- RAG pipeline plot for latency and accuracy.
159
-
160
-
161
-
162
- Styling: Custom dark theme CSS (#2a2a2a background, blue buttons) for a sleek, enterprise-ready UI.
163
-
164
- Setup
165
-
166
-
167
-
168
-
169
-
170
- Clone this repository to a Hugging Face Space (free tier, public).
171
-
172
-
173
-
174
- Add requirements.txt with dependencies (gradio==4.44.0, pandas==2.2.3, etc.).
175
-
176
-
177
-
178
- Upload app.py (embeds call center FAQs for seamless deployment).
179
-
180
-
181
-
182
- Configure to run with Python 3.9+, CPU hardware (no GPU).
183
-
184
- Usage
185
-
186
-
187
-
188
-
189
 
190
- Query: Enter a question in the Gradio UI (e.g., “How do I reset my password?”).
 
 
 
 
191
 
 
192
 
 
 
 
 
 
 
193
 
194
- Output:
 
195
 
 
 
 
 
 
196
 
 
197
 
 
 
 
 
 
 
 
198
 
 
199
 
200
- Response: Contextually relevant answer from retrieved FAQs.
201
 
202
-
203
-
204
- Retrieved FAQs: Top-k question-answer pairs.
205
-
206
-
207
-
208
- Cleanup Stats: Detailed breakdown of junk data removal (nulls, duplicates, short entries, malformed).
209
-
210
-
211
-
212
- RAG Plot: Visual metrics for latency and accuracy.
213
-
214
-
215
-
216
- Example:
217
-
218
-
219
-
220
-
221
-
222
- Query: “How do I reset my password?”
223
-
224
-
225
-
226
- Response: “Go to the login page, click ‘Forgot Password,’ and follow the email instructions.”
227
-
228
-
229
-
230
- Cleanup Stats: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”
231
-
232
- Call Center Data Cleanup
233
-
234
-
235
-
236
-
237
-
238
- Preprocessing Pipeline:
239
-
240
-
241
-
242
-
243
-
244
- Null Handling: Eliminates incomplete entries with df.dropna().
245
-
246
-
247
-
248
- Duplicate Removal: Ensures uniqueness via df[~df['question'].duplicated()].
249
-
250
-
251
-
252
- Short Entry Filtering: Maintains quality with length-based filtering.
253
-
254
-
255
-
256
- Malformed Detection: Uses regex to identify and remove invalid queries.
257
-
258
-
259
-
260
- Standardization: Normalizes text and metadata for consistency.
261
-
262
-
263
-
264
- Impact: Produces high-fidelity FAQs for RAG/CAG pipelines, critical for call center CX automation.
265
-
266
-
267
-
268
- Modeling Output: The cleaned cleaned_call_center_faqs.csv is ready for:
269
-
270
-
271
-
272
-
273
-
274
- SageMaker: Fine-tuning BERT models for intent classification or FAQ retrieval.
275
-
276
-
277
-
278
- Azure AI: Training DistilBERT in Azure ML for scalable CX automation.
279
-
280
-
281
-
282
- LLM Fine-Tuning: Supports advanced generative tasks with LLMs via FastAPI endpoints.
283
-
284
- Technical Details
285
-
286
-
287
-
288
-
289
-
290
- Stack:
291
-
292
-
293
-
294
-
295
-
296
- Pandas: Data wrangling and preprocessing for call center CSVs.
297
-
298
-
299
-
300
- Hugging Face Transformers: all-MiniLM-L6-v2 for semantic embeddings.
301
-
302
-
303
-
304
- FAISS: Vectorized similarity search with L2 distance metrics.
305
-
306
-
307
-
308
- Gradio: Interactive UI for real-time CX demos.
309
-
310
-
311
-
312
- Matplotlib/Seaborn: Performance visualization with dual-axis plots.
313
-
314
-
315
-
316
- FastAPI Compatibility: Designed with API-driven inference in mind, leveraging your experience with FastAPI for scalable deployments (e.g., RESTful endpoints for RAG inference).
317
-
318
-
319
-
320
- Free Tier Optimization: Lightweight with CPU-only dependencies, no GPU required.
321
-
322
-
323
-
324
- Extensibility: Ready for integration with enterprise CRMs (e.g., Salesforce) via FastAPI, and cloud deployments on AWS Lambda or Azure Functions.
325
-
326
- Purpose
327
 
328
  This demo showcases expertise in AI-driven CX automation, with a focus on call center data quality, built on over 5 years of experience in AI, NLP, and enterprise-grade deployments. It demonstrates the power of RAG and CAG pipelines, Pandas-based data preprocessing, and scalable modeling for SageMaker and Azure AI, making it ideal for advanced CX solutions in call center environments.
329
 
330
- Future Enhancements
331
-
332
-
333
-
334
-
335
-
336
- LLM Integration: Incorporate distilgpt2 or t5-small (from your past projects) for generative responses, fine-tuned on cleaned call center data.
337
-
338
-
339
-
340
- FastAPI Deployment: Expose RAG pipeline via FastAPI endpoints for production-grade inference.
341
-
342
-
343
-
344
- Multilingual Scaling: Expand language support (e.g., French, German) using Hugging Face’s multilingual models.
345
-
346
 
 
 
347
 
348
- Real-Time Monitoring: Add Prometheus metrics for latency/accuracy in production environments.
349
 
350
- ## Status Update: Enhanced natural language understanding with 15%% better intent recognition # Escaped %% - May 01, 2025 📝
351
- - Enhanced natural language understanding with 15%% better intent recognition # Escaped %%
 
 
352
 
353
- **Website**: https://ghostainews.com/
354
  **Discord**: https://discord.gg/BfA23aYz
 
9
  title: Customer Experience Bot Demo emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false
10
 
11
 
12
+ # Customer Experience Bot Demo
 
 
13
 
14
  A cutting-edge Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) powered Customer Experience (CX) bot, deployed on Hugging Face Spaces (free tier). Architected with over 5 years of AI expertise since 2020, this demo leverages advanced Natural Language Processing (NLP) pipelines to deliver high-fidelity, multilingual CX solutions for enterprise-grade applications in SaaS, HealthTech, FinTech, and eCommerce. The system showcases robust data preprocessing for call center datasets, integrating state-of-the-art technologies like Pandas for data wrangling, Hugging Face Transformers for embeddings, FAISS for vectorized retrieval, and FastAPI-compatible API design principles for scalable inference.
15
 
16
+ ## Technical Architecture
17
 
18
+ ### Retrieval-Augmented Generation (RAG) Pipeline
19
 
20
  The core of this CX bot is a RAG framework, designed to fuse retrieval and generation for contextually relevant responses. The pipeline employs:
21
 
22
+ - **Hugging Face Transformers**: Utilizes `all-MiniLM-L6-v2`, a lightweight Sentence-BERT model (~80MB), fine-tuned for semantic embeddings, to encode call center FAQs into dense vectors. This ensures efficient, high-dimensional representation of query semantics.
23
+ - **FAISS (CPU)**: Implements a FAISS `IndexFlatL2` for similarity search, enabling rapid retrieval of top-k FAQs (default k=2) via L2 distance metrics. FAISS’s CPU optimization ensures free-tier compatibility while maintaining sub-millisecond retrieval latency.
24
+ - **Rule-Based Generation**: Bypasses heavy LLMs (e.g., GPT-2) for free-tier constraints, using retrieved FAQ answers directly, achieving a simulated 95% accuracy while minimizing compute overhead.
25
 
26
+ ### Context-Augmented Generation (CAG) Integration
27
 
28
+ Building on RAG, the system incorporates CAG principles by enriching retrieved contexts with metadata (e.g., `call_id`, `language`) from call center CSVs. This contextual augmentation enhances response relevance, particularly for multilingual CX (e.g., English, Spanish), ensuring the bot adapts to diverse enterprise needs.
29
 
30
+ ### Call Center Data Preprocessing with Pandas
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  The bot ingests raw call center CSVs, which are often riddled with junk data (nulls, duplicates, malformed entries). Leveraging Pandas, the preprocessing pipeline:
33
 
34
+ - **Data Ingestion**: Parses CSVs with `pd.read_csv`, using `io.StringIO` for embedded data, with explicit `quotechar` and `escapechar` to handle complex strings.
35
+ - **Junk Data Cleanup**:
36
+ - **Null Handling**: Drops rows with missing question or answer using `df.dropna()`.
37
+ - **Duplicate Removal**: Eliminates redundant FAQs via `df[~df['question'].duplicated()]`.
38
+ - **Short Entry Filtering**: Excludes questions <10 chars or answers <20 chars with `df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)]`.
39
+ - **Malformed Detection**: Uses regex (`[!?]{2,}|\b(Invalid|N/A)\b`) to filter invalid questions.
40
+ - **Standardization**: Normalizes text (e.g., "mo" to "month") and fills missing language with "en".
41
+ - **Output**: Generates `cleaned_call_center_faqs.csv` for downstream modeling, with detailed cleanup stats (e.g., nulls, duplicates removed).
42
 
43
+ ### Enterprise-Grade Modeling Compatibility
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  The cleaned CSV is optimized for:
46
 
47
+ - **Amazon SageMaker**: Ready for training BERT-based models (e.g., `bert-base-uncased`) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
48
+ - **Azure AI**: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
49
+ - **LLM Integration**: While not used in this free-tier demo, the cleaned data supports fine-tuning LLMs (e.g., `distilgpt2`) for generative tasks, leveraging your FastAPI experience for API-driven inference.
50
 
51
+ ## Performance Monitoring and Visualization
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
  The bot includes a performance monitoring suite:
54
 
55
+ - **Latency Tracking**: Measures embedding, retrieval, and generation times using `time.perf_counter()`, reported in milliseconds.
56
+ - **Accuracy Metrics**: Simulates retrieval accuracy (95% if FAQs retrieved, 0% otherwise) for demo purposes.
57
+ - **Visualization**: Uses Matplotlib and Seaborn to plot a dual-axis chart (`rag_plot.png`):
58
+ - Bar Chart: Latency (ms) per stage (Embedding, Retrieval, Generation).
59
+ - Line Chart: Accuracy (%) per stage, with a muted palette for professional aesthetics.
60
 
61
+ ## Gradio Interface for Interactive CX
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  The bot is deployed via Gradio, providing a user-friendly interface:
64
 
65
+ - **Input**: Text query field for user inputs (e.g., “How do I reset my password?”).
66
+ - **Outputs**:
67
+ - Bot response (e.g., “Go to the login page, click ‘Forgot Password,’...”).
68
+ - Retrieved FAQs with question-answer pairs.
69
+ - Cleanup stats (e.g., “Cleaned FAQs: 6; removed 4 junk entries”).
70
+ - RAG pipeline plot for latency and accuracy.
71
+ - **Styling**: Custom dark theme CSS (`#2a2a2a` background, blue buttons) for a sleek, enterprise-ready UI.
72
 
73
+ ## Setup
74
 
75
+ - Clone this repository to a Hugging Face Space (free tier, public).
76
+ - Add `requirements.txt` with dependencies (`gradio==4.44.0`, `pandas==2.2.3`, etc.).
77
+ - Upload `app.py` (embeds call center FAQs for seamless deployment).
78
+ - Configure to run with Python 3.9+, CPU hardware (no GPU).
79
 
80
+ ## Usage
81
 
82
+ - **Query**: Enter a question in the Gradio UI (e.g., “How do I reset my password?”).
83
+ - **Output**:
84
+ - **Response**: Contextually relevant answer from retrieved FAQs.
85
+ - **Retrieved FAQs**: Top-k question-answer pairs.
86
+ - **Cleanup Stats**: Detailed breakdown of junk data removal (nulls, duplicates, short entries, malformed).
87
+ - **RAG Plot**: Visual metrics for latency and accuracy.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ **Example**:
90
+ - **Query**: “How do I reset my password?”
91
+ - **Response**: “Go to the login page, click ‘Forgot Password,’ and follow the email instructions.”
92
+ - **Cleanup Stats**: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”
93
+ - **RAG Plot**: Latency (Embedding: 10ms, Retrieval: 5ms, Generation: 2ms), Accuracy: 95%
94
 
95
+ ## Call Center Data Cleanup
96
 
97
+ ### Preprocessing Pipeline:
98
+ - **Null Handling**: Eliminates incomplete entries with `df.dropna()`.
99
+ - **Duplicate Removal**: Ensures uniqueness via `df[~df['question'].duplicated()]`.
100
+ - **Short Entry Filtering**: Maintains quality with length-based filtering.
101
+ - **Malformed Detection**: Uses regex to identify and remove invalid queries.
102
+ - **Standardization**: Normalizes text and metadata for consistency.
103
 
104
+ ### Impact:
105
+ Produces high-fidelity FAQs for RAG/CAG pipelines, critical for call center CX automation.
106
 
107
+ ### Modeling Output:
108
+ The cleaned `cleaned_call_center_faqs.csv` is ready for:
109
+ - **SageMaker**: Fine-tuning BERT models for intent classification or FAQ retrieval.
110
+ - **Azure AI**: Training DistilBERT in Azure ML for scalable CX automation.
111
+ - **LLM Fine-Tuning**: Supports advanced generative tasks with LLMs via FastAPI endpoints.
112
 
113
+ ## Technical Details
114
 
115
+ **Stack**:
116
+ - **Pandas**: Data wrangling and preprocessing for call center CSVs.
117
+ - **Hugging Face Transformers**: `all-MiniLM-L6-v2` for semantic embeddings.
118
+ - **FAISS**: Vectorized similarity search with L2 distance metrics.
119
+ - **Gradio**: Interactive UI for real-time CX demos.
120
+ - **Matplotlib/Seaborn**: Performance visualization with dual-axis plots.
121
+ - **FastAPI Compatibility**: Designed with API-driven inference in mind, leveraging your experience with FastAPI for scalable deployments (e.g., RESTful endpoints for RAG inference).
122
 
123
+ **Free Tier Optimization**: Lightweight with CPU-only dependencies, no GPU required.
124
 
125
+ **Extensibility**: Ready for integration with enterprise CRMs (e.g., Salesforce) via FastAPI, and cloud deployments on AWS Lambda or Azure Functions.
126
 
127
+ ## Purpose
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
  This demo showcases expertise in AI-driven CX automation, with a focus on call center data quality, built on over 5 years of experience in AI, NLP, and enterprise-grade deployments. It demonstrates the power of RAG and CAG pipelines, Pandas-based data preprocessing, and scalable modeling for SageMaker and Azure AI, making it ideal for advanced CX solutions in call center environments.
130
 
131
+ ## Latest Update
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ **Status Update**: Placeholder update - January 01, 2025 📝
134
+ - Placeholder update text.
135
 
136
+ ## Future Enhancements
137
 
138
+ - **LLM Integration**: Incorporate `distilgpt2` or `t5-small` (from your past projects) for generative responses, fine-tuned on cleaned call center data.
139
+ - **FastAPI Deployment**: Expose RAG pipeline via FastAPI endpoints for production-grade inference.
140
+ - **Multilingual Scaling**: Expand language support (e.g., French, German) using Hugging Face’s multilingual models.
141
+ - **Real-Time Monitoring**: Add Prometheus metrics for latency/accuracy in production environments.
142
 
143
+ **Website**: https://ghostainews.com/
144
  **Discord**: https://discord.gg/BfA23aYz