Update app.py
Browse files
app.py
CHANGED
@@ -6,41 +6,84 @@ import faiss
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
import time
|
|
|
|
|
9 |
import os
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
None, # Junk data
|
25 |
-
'Duplicate answer.' # Duplicate
|
26 |
-
]
|
27 |
-
})
|
28 |
|
29 |
# Data cleanup function
|
30 |
def clean_faqs(df):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
#
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Initialize RAG components
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
index.
|
|
|
|
|
|
|
44 |
|
45 |
# RAG process
|
46 |
def rag_process(query, k=2):
|
@@ -50,8 +93,11 @@ def rag_process(query, k=2):
|
|
50 |
start_time = time.perf_counter()
|
51 |
|
52 |
# Embed query
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
# Retrieve FAQs
|
57 |
start_time = time.perf_counter()
|
@@ -66,10 +112,10 @@ def rag_process(query, k=2):
|
|
66 |
|
67 |
# Metrics
|
68 |
metrics = {
|
69 |
-
'embed_time': embed_time * 1000,
|
70 |
'retrieval_time': retrieval_time * 1000,
|
71 |
'generation_time': generation_time * 1000,
|
72 |
-
'accuracy': 95.0 if retrieved_faqs else 0.0
|
73 |
}
|
74 |
|
75 |
return response, retrieved_faqs, metrics
|
@@ -103,13 +149,23 @@ def plot_metrics(metrics):
|
|
103 |
|
104 |
# Gradio interface
|
105 |
def chat_interface(query):
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Dark theme CSS
|
115 |
custom_css = """
|
@@ -120,8 +176,8 @@ body { background-color: #2a2a2a; color: #e0e0e0; }
|
|
120 |
"""
|
121 |
|
122 |
with gr.Blocks(css=custom_css) as demo:
|
123 |
-
gr.Markdown("#
|
124 |
-
gr.Markdown("Enter a query to see the bot's response, retrieved FAQs, and data cleanup stats.")
|
125 |
|
126 |
with gr.Row():
|
127 |
query_input = gr.Textbox(label="Your Query", placeholder="e.g., How do I reset my password?")
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import seaborn as sns
|
8 |
import time
|
9 |
+
import io
|
10 |
+
import re
|
11 |
import os
|
12 |
|
13 |
+
# Embedded call center FAQs
|
14 |
+
csv_data = """question,answer,call_id,agent_id,timestamp,language
|
15 |
+
How do I reset my password?,Go to the login page, click "Forgot Password," and follow the email instructions.,12345,A001,2025-04-01 10:15:23,en
|
16 |
+
What are your pricing plans?,We offer Basic ($10/month), Pro ($50/month), and Enterprise (custom).,12346,A002,2025-04-01 10:17:45,en
|
17 |
+
How do I contact support?,Email [email protected] or call +1-800-123-4567.,12347,A003,2025-04-01 10:20:10,en
|
18 |
+
,,12348,A001,2025-04-01 10:22:00,en
|
19 |
+
How do I reset my password?,Duplicate answer.,12349,A002,2025-04-01 10:25:30,en
|
20 |
+
help,Contact us.,12350,A004,2025-04-01 10:27:15,
|
21 |
+
What is the refund policy?,Refunds available within 30 days; contact support.,12351,A005,2025-04-01 10:30:00,es
|
22 |
+
Invalid query!!!,N/A,12352,A006,2025-04-01 10:32:45,en
|
23 |
+
How do I update my billing?,Log in, go to "Billing," and update your payment method.,,A007,2025-04-01 10:35:10,en
|
24 |
+
What are pricing plans?,Basic ($10/mo), Pro ($50/mo).,12353,A002,2025-04-01 10:37:20,en
|
25 |
+
"""
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Data cleanup function
|
28 |
def clean_faqs(df):
|
29 |
+
original_count = len(df)
|
30 |
+
cleanup_details = {
|
31 |
+
'original': original_count,
|
32 |
+
'nulls_removed': 0,
|
33 |
+
'duplicates_removed': 0,
|
34 |
+
'short_removed': 0,
|
35 |
+
'malformed_removed': 0
|
36 |
+
}
|
37 |
+
|
38 |
+
# Remove nulls
|
39 |
+
null_rows = df['question'].isna() | df['answer'].isna()
|
40 |
+
cleanup_details['nulls_removed'] = null_rows.sum()
|
41 |
+
df = df[~null_rows]
|
42 |
+
|
43 |
+
# Remove duplicates
|
44 |
+
duplicate_rows = df['question'].duplicated()
|
45 |
+
cleanup_details['duplicates_removed'] = duplicate_rows.sum()
|
46 |
+
df = df[~duplicate_rows]
|
47 |
+
|
48 |
+
# Remove short entries
|
49 |
+
short_rows = (df['question'].str.len() < 10) | (df['answer'].str.len() < 20)
|
50 |
+
cleanup_details['short_removed'] = short_rows.sum()
|
51 |
+
df = df[~short_rows]
|
52 |
+
|
53 |
+
# Remove malformed questions
|
54 |
+
malformed_rows = df['question'].str.contains(r'[!?]{2,}|\b(Invalid|N/A)\b', regex=True, case=False, na=False)
|
55 |
+
cleanup_details['malformed_removed'] = malformed_rows.sum()
|
56 |
+
df = df[~malformed_rows]
|
57 |
+
|
58 |
+
# Standardize text
|
59 |
+
df['answer'] = df['answer'].str.replace(r'\bmo\b', 'month', regex=True, case=False)
|
60 |
+
df['language'] = df['language'].fillna('en')
|
61 |
+
|
62 |
+
cleaned_count = len(df)
|
63 |
+
cleanup_details['cleaned'] = cleaned_count
|
64 |
+
cleanup_details['removed'] = original_count - cleaned_count
|
65 |
+
|
66 |
+
# Save cleaned CSV for modeling
|
67 |
+
cleaned_path = 'cleaned_call_center_faqs.csv'
|
68 |
+
df.to_csv(cleaned_path, index=False)
|
69 |
+
|
70 |
+
return df, cleanup_details
|
71 |
|
72 |
+
# Load and clean FAQs
|
73 |
+
try:
|
74 |
+
faq_data = pd.read_csv(io.StringIO(csv_data))
|
75 |
+
faq_data, cleanup_details = clean_faqs(faq_data)
|
76 |
+
except Exception as e:
|
77 |
+
raise Exception(f"Failed to load/clean FAQs: {str(e)}")
|
78 |
|
79 |
# Initialize RAG components
|
80 |
+
try:
|
81 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
82 |
+
embeddings = embedder.encode(faq_data['question'].tolist(), show_progress_bar=False)
|
83 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
84 |
+
index.add(embeddings.astype(np.float32))
|
85 |
+
except Exception as e:
|
86 |
+
raise Exception(f"Failed to initialize RAG components: {str(e)}")
|
87 |
|
88 |
# RAG process
|
89 |
def rag_process(query, k=2):
|
|
|
93 |
start_time = time.perf_counter()
|
94 |
|
95 |
# Embed query
|
96 |
+
try:
|
97 |
+
query_embedding = embedder.encode([query], show_progress_bar=False)
|
98 |
+
embed_time = time.perf_counter() - start_time
|
99 |
+
except Exception as e:
|
100 |
+
return f"Error embedding query: {str(e)}", [], {}
|
101 |
|
102 |
# Retrieve FAQs
|
103 |
start_time = time.perf_counter()
|
|
|
112 |
|
113 |
# Metrics
|
114 |
metrics = {
|
115 |
+
'embed_time': embed_time * 1000,
|
116 |
'retrieval_time': retrieval_time * 1000,
|
117 |
'generation_time': generation_time * 1000,
|
118 |
+
'accuracy': 95.0 if retrieved_faqs else 0.0
|
119 |
}
|
120 |
|
121 |
return response, retrieved_faqs, metrics
|
|
|
149 |
|
150 |
# Gradio interface
|
151 |
def chat_interface(query):
|
152 |
+
try:
|
153 |
+
response, retrieved_faqs, metrics = rag_process(query)
|
154 |
+
plot_path = plot_metrics(metrics)
|
155 |
+
|
156 |
+
faq_text = "\n".join([f"Q: {faq['question']}\nA: {faq['answer']}" for faq in retrieved_faqs])
|
157 |
+
cleanup_stats = (
|
158 |
+
f"Cleaned FAQs: {cleanup_details['cleaned']} "
|
159 |
+
f"(removed {cleanup_details['removed']} junk entries: "
|
160 |
+
f"{cleanup_details['nulls_removed']} nulls, "
|
161 |
+
f"{cleanup_details['duplicates_removed']} duplicates, "
|
162 |
+
f"{cleanup_details['short_removed']} short entries, "
|
163 |
+
f"{cleanup_details['malformed_removed']} malformed)"
|
164 |
+
)
|
165 |
+
|
166 |
+
return response, faq_text, cleanup_stats, plot_path
|
167 |
+
except Exception as e:
|
168 |
+
return f"Error: {str(e)}", "", "", None
|
169 |
|
170 |
# Dark theme CSS
|
171 |
custom_css = """
|
|
|
176 |
"""
|
177 |
|
178 |
with gr.Blocks(css=custom_css) as demo:
|
179 |
+
gr.Markdown("# Customer Experience Bot Demo")
|
180 |
+
gr.Markdown("Enter a query to see the bot's response, retrieved FAQs, and call center data cleanup stats.")
|
181 |
|
182 |
with gr.Row():
|
183 |
query_input = gr.Textbox(label="Your Query", placeholder="e.g., How do I reset my password?")
|