ghostai1 commited on
Commit
eda95b4
·
verified ·
1 Parent(s): f9e35a2

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +141 -0
app.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ from sentence_transformers import SentenceTransformer
5
+ import faiss
6
+ import matplotlib.pyplot as plt
7
+ import seaborn as sns
8
+ import time
9
+ import os
10
+
11
+ # Sample FAQs (embedded in script for simplicity)
12
+ faq_data = pd.DataFrame({
13
+ 'question': [
14
+ 'How do I reset my password?',
15
+ 'What are your pricing plans?',
16
+ 'How do I contact support?',
17
+ None, # Junk data (null)
18
+ 'How do I reset my password?' # Duplicate
19
+ ],
20
+ 'answer': [
21
+ 'Go to the login page, click "Forgot Password," and follow the email instructions.',
22
+ 'We offer Basic ($10/month), Pro ($50/month), and Enterprise (custom).',
23
+ 'Email [email protected] or call +1-800-123-4567.',
24
+ None, # Junk data
25
+ 'Duplicate answer.' # Duplicate
26
+ ]
27
+ })
28
+
29
+ # Data cleanup function
30
+ def clean_faqs(df):
31
+ df = df.dropna() # Remove nulls
32
+ df = df[~df['question'].duplicated()] # Remove duplicates
33
+ df = df[df['answer'].str.len() > 20] # Filter short answers
34
+ return df
35
+
36
+ # Preprocess FAQs
37
+ faq_data = clean_faqs(faq_data)
38
+
39
+ # Initialize RAG components
40
+ embedder = SentenceTransformer('all-MiniLM-L6-v2')
41
+ embeddings = embedder.encode(faq_data['question'].tolist(), show_progress_bar=False)
42
+ index = faiss.IndexFlatL2(embeddings.shape[1])
43
+ index.add(embeddings.astype(np.float32))
44
+
45
+ # RAG process
46
+ def rag_process(query, k=2):
47
+ if not query.strip() or len(query) < 5:
48
+ return "Invalid query. Please enter a valid question.", [], {}
49
+
50
+ start_time = time.perf_counter()
51
+
52
+ # Embed query
53
+ query_embedding = embedder.encode([query], show_progress_bar=False)
54
+ embed_time = time.perf_counter() - start_time
55
+
56
+ # Retrieve FAQs
57
+ start_time = time.perf_counter()
58
+ distances, indices = index.search(query_embedding.astype(np.float32), k)
59
+ retrieved_faqs = faq_data.iloc[indices[0]][['question', 'answer']].to_dict('records')
60
+ retrieval_time = time.perf_counter() - start_time
61
+
62
+ # Generate response (rule-based for free tier)
63
+ start_time = time.perf_counter()
64
+ response = retrieved_faqs[0]['answer'] if retrieved_faqs else "Sorry, I couldn't find an answer."
65
+ generation_time = time.perf_counter() - start_time
66
+
67
+ # Metrics
68
+ metrics = {
69
+ 'embed_time': embed_time * 1000, # ms
70
+ 'retrieval_time': retrieval_time * 1000,
71
+ 'generation_time': generation_time * 1000,
72
+ 'accuracy': 95.0 if retrieved_faqs else 0.0 # Simulated
73
+ }
74
+
75
+ return response, retrieved_faqs, metrics
76
+
77
+ # Plot RAG pipeline
78
+ def plot_metrics(metrics):
79
+ data = pd.DataFrame({
80
+ 'Stage': ['Embedding', 'Retrieval', 'Generation'],
81
+ 'Latency (ms)': [metrics['embed_time'], metrics['retrieval_time'], metrics['generation_time']],
82
+ 'Accuracy (%)': [100, metrics['accuracy'], metrics['accuracy']]
83
+ })
84
+
85
+ plt.figure(figsize=(8, 5))
86
+ sns.set_style("whitegrid")
87
+ sns.set_palette("muted")
88
+
89
+ ax1 = sns.barplot(x='Stage', y='Latency (ms)', data=data, color='skyblue')
90
+ ax1.set_ylabel('Latency (ms)', color='blue')
91
+ ax1.tick_params(axis='y', labelcolor='blue')
92
+
93
+ ax2 = ax1.twinx()
94
+ sns.lineplot(x='Stage', y='Accuracy (%)', data=data, marker='o', color='red')
95
+ ax2.set_ylabel('Accuracy (%)', color='red')
96
+ ax2.tick_params(axis='y', labelcolor='red')
97
+
98
+ plt.title('RAG Pipeline: Latency and Accuracy')
99
+ plt.tight_layout()
100
+ plt.savefig('rag_plot.png')
101
+ plt.close()
102
+ return 'rag_plot.png'
103
+
104
+ # Gradio interface
105
+ def chat_interface(query):
106
+ response, retrieved_faqs, metrics = rag_process(query)
107
+ plot_path = plot_metrics(metrics)
108
+
109
+ faq_text = "\n".join([f"Q: {faq['question']}\nA: {faq['answer']}" for faq in retrieved_faqs])
110
+ cleanup_stats = f"Cleaned FAQs: {len(faq_data)} (removed {5 - len(faq_data)} junk entries)"
111
+
112
+ return response, faq_text, cleanup_stats, plot_path
113
+
114
+ # Dark theme CSS
115
+ custom_css = """
116
+ body { background-color: #2a2a2a; color: #e0e0e0; }
117
+ .gr-box { background-color: #3a3a3a; border: 1px solid #4a4a4a; }
118
+ .gr-button { background-color: #1e90ff; color: white; }
119
+ .gr-button:hover { background-color: #1c86ee; }
120
+ """
121
+
122
+ with gr.Blocks(css=custom_css) as demo:
123
+ gr.Markdown("# Crescendo CX Bot Demo")
124
+ gr.Markdown("Enter a query to see the bot's response, retrieved FAQs, and data cleanup stats.")
125
+
126
+ with gr.Row():
127
+ query_input = gr.Textbox(label="Your Query", placeholder="e.g., How do I reset my password?")
128
+ submit_btn = gr.Button("Submit")
129
+
130
+ response_output = gr.Textbox(label="Bot Response")
131
+ faq_output = gr.Textbox(label="Retrieved FAQs")
132
+ cleanup_output = gr.Textbox(label="Data Cleanup Stats")
133
+ plot_output = gr.Image(label="RAG Pipeline Metrics")
134
+
135
+ submit_btn.click(
136
+ fn=chat_interface,
137
+ inputs=query_input,
138
+ outputs=[response_output, faq_output, cleanup_output, plot_output]
139
+ )
140
+
141
+ demo.launch()