ghostai1's picture
Update app.py
5aae4e6 verified
raw
history blame
10.8 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
GhostAI Music Generator — Zero-GPU & GPU friendly
Python : 3.10
Torch : 2.1 CPU wheels (or CUDA 11.8/12.1)
Gradio : 5.31.0
Last updated: 2025-05-29
"""
import os
import sys
import gc
import time
import random
import warnings
import tempfile
import psutil
import numpy as np
import torch
import torchaudio
import gradio as gr
from pydub import AudioSegment
from torch.cuda.amp import autocast
from audiocraft.models import MusicGen
from huggingface_hub import login
# ----------------------------------------------------------------------
# Compatibility shim (torch < 2.3)
# ----------------------------------------------------------------------
if not hasattr(torch, "get_default_device"):
torch.get_default_device = lambda: torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
# ----------------------------------------------------------------------
# Silence warnings & CUDA fragmentation tuning
# ----------------------------------------------------------------------
warnings.filterwarnings("ignore")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
# ----------------------------------------------------------------------
# Hugging Face authentication
# ----------------------------------------------------------------------
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
print("ERROR: environment variable HF_TOKEN not set.")
sys.exit(1)
try:
login(HF_TOKEN)
except Exception as e:
print(f"ERROR: Hugging Face login failed: {e}")
sys.exit(1)
# ----------------------------------------------------------------------
# Device setup & cleanup
# ----------------------------------------------------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Running on {device.upper()}")
if device == "cuda":
print(f"GPU: {torch.cuda.get_device_name(0)}")
def gpu_clean():
if device == "cuda":
torch.cuda.empty_cache()
gc.collect()
torch.cuda.ipc_collect()
torch.cuda.synchronize()
gpu_clean()
# ----------------------------------------------------------------------
# Load MusicGen model (fixed checkpoint name)
# ----------------------------------------------------------------------
print("Loading MusicGen ‘medium’ checkpoint …")
musicgen = MusicGen.get_pretrained("medium", device=device)
musicgen.set_generation_params(duration=10, two_step_cfg=False)
# ----------------------------------------------------------------------
# Resource monitoring
# ----------------------------------------------------------------------
def log_resources(stage=""):
if stage:
print(f"--- {stage} ---")
if device == "cuda":
alloc = torch.cuda.memory_allocated() / 1024**3
resv = torch.cuda.memory_reserved() / 1024**3
print(f"GPU Mem | Alloc {alloc:.2f} GB Reserved {resv:.2f} GB")
print(f"CPU Mem | {psutil.virtual_memory().percent}% used")
def vram_ok(threshold=3.5):
if device != "cuda":
return True
total = torch.cuda.get_device_properties(0).total_memory / 1024**3
free = total - torch.cuda.memory_allocated() / 1024**3
if free < threshold:
print(f"WARNING: Only {free:.2f} GB VRAM free (<{threshold} GB).")
return free >= threshold
# ----------------------------------------------------------------------
# Prompt builders
# ----------------------------------------------------------------------
def _make_prompt(base, bpm, drum, synth, steps, bass, gtr, def_bass, def_gtr, flow):
step_txt = f" with {steps}" if steps != "none" else flow.format(bpm=bpm)
drum_txt = f", {drum} drums" if drum != "none" else ""
synth_txt = f", {synth} accents" if synth != "none" else ""
bass_txt = f", {bass}" if bass != "none" else def_bass
gtr_txt = f", {gtr} guitar riffs"if gtr != "none" else def_gtr
return f"{base}{bass_txt}{gtr_txt}{drum_txt}{synth_txt}{step_txt} at {bpm} BPM."
def set_red_hot_chili_peppers_prompt(bpm, drum, synth, steps, bass, gtr):
return _make_prompt(
"Instrumental funk rock", bpm, drum, synth, steps, bass, gtr,
", groovy basslines", ", syncopated guitar riffs",
"{bpm} BPM funky flow" if bpm > 120 else "groovy rhythmic flow"
)
# … include the other set_*_prompt functions exactly as before …
# ----------------------------------------------------------------------
# Audio post-processing
# ----------------------------------------------------------------------
def apply_eq(seg: AudioSegment):
return seg.low_pass_filter(8000).high_pass_filter(80)
def apply_fade(seg: AudioSegment, fin=1000, fout=1000):
return seg.fade_in(fin).fade_out(fout)
# ----------------------------------------------------------------------
# Core generation
# ----------------------------------------------------------------------
def generate_music(
prompt, cfg, top_k, top_p, temp,
total_len, chunk_len, crossfade,
bpm, drum, synth, steps, bass, gtr
):
if not prompt.strip():
return None, "⚠️ Prompt cannot be empty."
if not vram_ok():
return None, "⚠️ Insufficient VRAM."
total_len = int(total_len)
chunk_len = int(max(5, min(chunk_len, 15)))
n_chunks = max(1, total_len // chunk_len)
chunk_len = total_len / n_chunks
overlap = min(1.0, crossfade / 1000.0)
render_len = chunk_len + overlap
sr = musicgen.sample_rate
segments = []
torch.manual_seed(42)
np.random.seed(42)
start = time.time()
for i in range(n_chunks):
log_resources(f"Before chunk {i+1}")
musicgen.set_generation_params(
duration=render_len,
use_sampling=True,
top_k=top_k,
top_p=top_p,
temperature=temp,
cfg_coef=cfg
)
with torch.no_grad(), autocast():
audio = musicgen.generate([prompt], progress=False)[0]
audio = audio.cpu().to(torch.float32)
if audio.dim() == 1:
audio = torch.stack([audio, audio])
elif audio.shape[0] == 1:
audio = torch.cat([audio, audio], dim=0)
elif audio.shape[0] != 2:
audio = torch.cat([audio[:1], audio[:1]], dim=0)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
torchaudio.save(tmp.name, audio, sr, bits_per_sample=24)
seg = AudioSegment.from_wav(tmp.name)
os.unlink(tmp.name)
segments.append(seg)
gpu_clean()
log_resources(f"After chunk {i+1}")
final = segments[0]
for seg in segments[1:]:
final = final.append(seg + 1, crossfade=crossfade)
final = final[: total_len * 1000]
final = apply_fade(apply_eq(final).normalize(headroom=-9.0))
out_path = "output_cleaned.mp3"
final.export(
out_path,
format="mp3",
bitrate="128k",
tags={"title": "GhostAI Instrumental", "artist": "GhostAI"}
)
log_resources("After final")
print(f"Total generation time: {time.time() - start:.2f}s")
return out_path, "✅ Done!"
def clear_inputs():
return (
"", 3.0, 250, 0.9, 1.0,
30, 10, 1000,
120, "none", "none", "none", "none", "none"
)
# ----------------------------------------------------------------------
# Gradio UI
# ----------------------------------------------------------------------
css = """
body {
background: linear-gradient(135deg, #0A0A0A 0%, #1C2526 100%);
color: #E0E0E0; font-family: 'Orbitron', sans-serif;
}
.header {
text-align: center; padding: 10px; background: rgba(0,0,0,0.9);
border-bottom: 1px solid #00FF9F;
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML('<div class="header"><h1>👻 GhostAI Music Generator</h1></div>')
prompt_box = gr.Textbox(label="Instrumental Prompt ✍️", lines=4)
with gr.Row():
gr.Button("RHCP 🌶️").click(
set_red_hot_chili_peppers_prompt,
inputs=[gr.State(120), gr.State("none"), gr.State("none"),
gr.State("none"), gr.State("none"), gr.State("none")],
outputs=prompt_box
)
gr.Button("Nirvana 🎸").click(
set_nirvana_grunge_prompt,
inputs=[gr.State(120), gr.State("none"), gr.State("none"),
gr.State("none"), gr.State("none"), gr.State("none")],
outputs=prompt_box
)
# … add the other genre buttons in the same pattern …
with gr.Group():
cfg_scale = gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="CFG Scale")
top_k = gr.Slider(10, 500, value=250, step=10, label="Top-K")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-P")
temperature = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature")
total_len = gr.Radio([30, 60, 90, 120], value=30, label="Length (s)")
chunk_len = gr.Slider(5, 15, value=10, step=1, label="Chunk (s)")
crossfade = gr.Slider(100, 2000, value=1000, step=100, label="Crossfade (ms)")
bpm = gr.Slider(60, 180, value=120, label="Tempo (BPM)")
drum_beat = gr.Dropdown(
["none","standard rock","funk groove","techno kick","jazz swing"],
value="none", label="Drum Beat"
)
synthesizer = gr.Dropdown(
["none","analog synth","digital pad","arpeggiated synth"],
value="none", label="Synthesizer"
)
steps = gr.Dropdown(
["none","syncopated steps","steady steps","complex steps"],
value="none", label="Rhythmic Steps"
)
bass_style = gr.Dropdown(
["none","slap bass","deep bass","melodic bass"],
value="none", label="Bass Style"
)
guitar_style = gr.Dropdown(
["none","distorted","clean","jangle"],
value="none", label="Guitar Style"
)
gen_btn = gr.Button("Generate Music 🚀")
clr_btn = gr.Button("Clear 🧹")
out_audio = gr.Audio(label="Generated Track", type="filepath")
status = gr.Textbox(label="Status", interactive=False)
gen_btn.click(
generate_music,
inputs=[
prompt_box, cfg_scale, top_k, top_p, temperature,
total_len, chunk_len, crossfade,
bpm, drum_beat, synthesizer, steps, bass_style, guitar_style
],
outputs=[out_audio, status]
)
clr_btn.click(
clear_inputs, None,
[
prompt_box, cfg_scale, top_k, top_p, temperature,
total_len, chunk_len, crossfade,
bpm, drum_beat, synthesizer, steps, bass_style, guitar_style
]
)
app = demo.launch(share=False, show_error=True)
try:
demo._server.app.docs_url = demo._server.app.redoc_url = demo._server.app.openapi_url = None
except Exception:
pass