Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
import os, sys, gc, time, warnings, tempfile
|
3 |
import torch, torchaudio, numpy as np, gradio as gr
|
4 |
from pydub import AudioSegment
|
@@ -6,66 +7,90 @@ from audiocraft.models import MusicGen
|
|
6 |
from huggingface_hub import login
|
7 |
|
8 |
warnings.filterwarnings("ignore")
|
9 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
10 |
|
11 |
-
#
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
14 |
sys.exit("ERROR: HF_TOKEN not set.")
|
15 |
login(HF_TOKEN)
|
16 |
|
17 |
-
#
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
print(f"Running on {device.upper()}")
|
20 |
-
torch.cuda.empty_cache(); gc.collect()
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
def generate_music(prompt, cfg, top_k, top_p, temp, total_len, chunk_len, crossfade):
|
27 |
if not prompt.strip():
|
28 |
return None, "⚠️ Enter a valid prompt."
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
for _ in range(
|
34 |
with torch.no_grad():
|
35 |
-
audio = musicgen.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
audio = audio if audio.dim() == 2 else audio.repeat(2, 1)
|
38 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
39 |
-
torchaudio.save(tmp.name, audio,
|
40 |
-
|
41 |
os.unlink(tmp.name)
|
42 |
-
segments.append(
|
43 |
-
|
|
|
44 |
|
|
|
45 |
final = segments[0]
|
46 |
for seg in segments[1:]:
|
47 |
final = final.append(seg, crossfade=crossfade)
|
48 |
-
|
|
|
49 |
|
50 |
out_path = "output_cleaned.mp3"
|
51 |
final.export(out_path, format="mp3", bitrate="128k", tags={"title": "GhostAI Track", "artist": "GhostAI"})
|
52 |
-
return out_path, "✅ Done!"
|
53 |
|
54 |
-
|
|
|
|
|
55 |
demo = gr.Interface(
|
56 |
fn=generate_music,
|
57 |
inputs=[
|
58 |
gr.Textbox(label="Instrumental Prompt"),
|
59 |
-
gr.Slider(1.0, 10.0, value=3.0, label="CFG Scale"),
|
60 |
-
gr.Slider(10, 500, value=250, label="Top-K"),
|
61 |
-
gr.Slider(0.0, 1.0, value=0.9, label="Top-P"),
|
62 |
-
gr.Slider(0.1, 2.0, value=1.0, label="Temperature"),
|
63 |
-
gr.Radio([30, 60, 90, 120], value=30, label="Length (
|
64 |
-
gr.Slider(5, 15, value=10, label="Chunk Length (
|
65 |
-
gr.Slider(100, 2000, value=1000, label="Crossfade (ms)")
|
66 |
],
|
67 |
outputs=[
|
68 |
-
gr.Audio(label="Generated Music"),
|
69 |
gr.Textbox(label="Status")
|
70 |
],
|
71 |
title="👻 GhostAI Music Generator",
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
# GhostAI Music Generator for Hugging Face Spaces
|
3 |
import os, sys, gc, time, warnings, tempfile
|
4 |
import torch, torchaudio, numpy as np, gradio as gr
|
5 |
from pydub import AudioSegment
|
|
|
7 |
from huggingface_hub import login
|
8 |
|
9 |
warnings.filterwarnings("ignore")
|
|
|
10 |
|
11 |
+
# Hugging Face token authentication
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
if not HF_TOKEN:
|
14 |
sys.exit("ERROR: HF_TOKEN not set.")
|
15 |
login(HF_TOKEN)
|
16 |
|
17 |
+
# Simple GPU check suitable for Hugging Face
|
18 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
print(f"Running on {device.upper()}")
|
|
|
20 |
|
21 |
+
def clean_resources():
|
22 |
+
if device == "cuda":
|
23 |
+
torch.cuda.empty_cache()
|
24 |
+
gc.collect()
|
25 |
+
|
26 |
+
clean_resources()
|
27 |
|
28 |
+
# Load MusicGen model explicitly on correct device
|
29 |
+
print("Loading MusicGen 'medium' model...")
|
30 |
+
musicgen = MusicGen.get_pretrained("medium")
|
31 |
+
musicgen.lm.to(device)
|
32 |
+
musicgen.set_generation_params(duration=10)
|
33 |
+
|
34 |
+
# Core generation logic
|
35 |
def generate_music(prompt, cfg, top_k, top_p, temp, total_len, chunk_len, crossfade):
|
36 |
if not prompt.strip():
|
37 |
return None, "⚠️ Enter a valid prompt."
|
38 |
|
39 |
+
segments, sr = [], musicgen.sample_rate
|
40 |
+
chunks = max(1, total_len // chunk_len)
|
41 |
+
|
42 |
+
for _ in range(chunks):
|
43 |
with torch.no_grad():
|
44 |
+
audio = musicgen.generate(
|
45 |
+
[prompt],
|
46 |
+
progress=False,
|
47 |
+
temperature=temp,
|
48 |
+
cfg_coef=cfg,
|
49 |
+
top_k=top_k,
|
50 |
+
top_p=top_p,
|
51 |
+
duration=chunk_len
|
52 |
+
)[0].cpu().float()
|
53 |
+
|
54 |
+
if audio.dim() == 1:
|
55 |
+
audio = audio.unsqueeze(0).repeat(2, 1)
|
56 |
+
elif audio.shape[0] == 1:
|
57 |
+
audio = audio.repeat(2, 1)
|
58 |
|
|
|
59 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
60 |
+
torchaudio.save(tmp.name, audio, sr)
|
61 |
+
segment = AudioSegment.from_wav(tmp.name)
|
62 |
os.unlink(tmp.name)
|
63 |
+
segments.append(segment)
|
64 |
+
|
65 |
+
clean_resources()
|
66 |
|
67 |
+
# Concatenate audio segments
|
68 |
final = segments[0]
|
69 |
for seg in segments[1:]:
|
70 |
final = final.append(seg, crossfade=crossfade)
|
71 |
+
|
72 |
+
final = final[:total_len * 1000].fade_in(1000).fade_out(1000).normalize(headroom=-9.0)
|
73 |
|
74 |
out_path = "output_cleaned.mp3"
|
75 |
final.export(out_path, format="mp3", bitrate="128k", tags={"title": "GhostAI Track", "artist": "GhostAI"})
|
|
|
76 |
|
77 |
+
return out_path, "✅ Music Generation Complete!"
|
78 |
+
|
79 |
+
# Simple Gradio Interface
|
80 |
demo = gr.Interface(
|
81 |
fn=generate_music,
|
82 |
inputs=[
|
83 |
gr.Textbox(label="Instrumental Prompt"),
|
84 |
+
gr.Slider(1.0, 10.0, value=3.0, step=0.1, label="CFG Scale"),
|
85 |
+
gr.Slider(10, 500, value=250, step=10, label="Top-K"),
|
86 |
+
gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-P"),
|
87 |
+
gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Temperature"),
|
88 |
+
gr.Radio([30, 60, 90, 120], value=30, label="Length (seconds)"),
|
89 |
+
gr.Slider(5, 15, value=10, step=1, label="Chunk Length (seconds)"),
|
90 |
+
gr.Slider(100, 2000, value=1000, step=100, label="Crossfade (ms)")
|
91 |
],
|
92 |
outputs=[
|
93 |
+
gr.Audio(label="Generated Music", type="filepath"),
|
94 |
gr.Textbox(label="Status")
|
95 |
],
|
96 |
title="👻 GhostAI Music Generator",
|