ghostai1 commited on
Commit
2fde0c7
·
verified ·
1 Parent(s): 6e6a051

Create camera_app.py

Browse files

sudo chown ubuntu:www-data /home/ubuntu/ghostpack/ghostpack_gradio_f1.py
sudo chmod 775 /home/ubuntu/ghostpack/ghostpack_gradio_f1.py
pip install gradio pillow torch diffusers transformers einops numpy av
python3 /home/ubuntu/ghostpack/ghostpack_gradio_f1.py --inbrowser

Files changed (1) hide show
  1. camera_app.py +890 -0
camera_app.py ADDED
@@ -0,0 +1,890 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # ==========================================================
3
+ # FILE: ghostpack_gradio_f1.py
4
+ # ==========================================================
5
+ import os, sys, time, json, argparse, importlib.util, subprocess, traceback
6
+ import torch, einops, numpy as np
7
+ from PIL import Image
8
+ import io
9
+ import gradio as gr
10
+ import asyncio
11
+ from queue import Queue
12
+ from threading import Thread, Event
13
+ import re
14
+ import logging
15
+ from diffusers import AutoencoderKLHunyuanVideo
16
+ from transformers import (
17
+ LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
18
+ SiglipImageProcessor, SiglipVisionModel
19
+ )
20
+ from diffusers_helper.hf_login import login
21
+ from diffusers_helper.hunyuan import (
22
+ encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
23
+ )
24
+ from diffusers_helper.utils import (
25
+ save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
26
+ resize_and_center_crop, generate_timestamp
27
+ )
28
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
29
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
30
+ from diffusers_helper.memory import (
31
+ gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
32
+ offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
33
+ DynamicSwapInstaller, unload_complete_models, load_model_as_complete
34
+ )
35
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
36
+ from diffusers_helper.bucket_tools import find_nearest_bucket
37
+
38
+ # Set up logging
39
+ logging.basicConfig(filename='/home/ubuntu/ghostpack/ghostpack.log', level=logging.ERROR, format='%(asctime)s %(levelname)s:%(message)s')
40
+
41
+ # MODIFIED: Added version number
42
+ VERSION = "1.0.0"
43
+
44
+ # ------------------------- CLI ----------------------------
45
+ parser = argparse.ArgumentParser()
46
+ parser.add_argument('--share', action='store_true')
47
+ parser.add_argument('--server', type=str, default='0.0.0.0')
48
+ parser.add_argument('--port', type=int)
49
+ parser.add_argument('--inbrowser', action='store_true')
50
+ parser.add_argument('--cli', action='store_true')
51
+ args = parser.parse_args()
52
+
53
+ # MODIFIED: Global state variables
54
+ render_progress = 0.0
55
+ render_status = "idle"
56
+ render_times = []
57
+ stream = None
58
+ start_render_time = None
59
+
60
+ BASE = os.path.abspath(os.path.dirname(__file__))
61
+ os.environ['HF_HOME'] = os.path.join(BASE, 'hf_download')
62
+
63
+ if args.cli:
64
+ print("👻 GhostPack F1 Pro CLI\n")
65
+ print("python ghostpack_gradio_f1.py # launch UI")
66
+ print("python ghostpack_gradio_f1.py --cli # show help\n")
67
+ sys.exit(0)
68
+
69
+ # ---------------------- Paths -----------------------------
70
+ OUT_BASE = os.path.join('/home/ubuntu/ghostpack', 'outputs')
71
+ OUT_IMG = os.path.join(OUT_BASE, 'img')
72
+ OUT_TEMP = os.path.join(OUT_BASE, 'tmp')
73
+ OUT_VID = os.path.join(OUT_BASE, 'vid')
74
+ OUT_DATA = os.path.join(OUT_BASE, 'data')
75
+ PROMPT_LOG = os.path.join(OUT_DATA, 'prompts.txt')
76
+ SAVED_PROMPTS = os.path.join(OUT_DATA, 'saved_prompts.json')
77
+ INSTALL_LOG = os.path.join(OUT_DATA, 'install_logs.txt')
78
+ LAST_CLEANUP_FILE = os.path.join(OUT_DATA, 'last_cleanup.txt')
79
+ VIDEO_INFO_JSON = os.path.join(OUT_DATA, 'video_info.json')
80
+
81
+ # MODIFIED: Create directories and initialize files with permissions
82
+ for d in (OUT_BASE, OUT_IMG, OUT_TEMP, OUT_VID, OUT_DATA):
83
+ try:
84
+ os.makedirs(d, exist_ok=True)
85
+ os.chmod(d, 0o775)
86
+ except Exception as e:
87
+ logging.error(f"Failed to create/chmod directory {d}: {e}")
88
+ if not os.path.exists(SAVED_PROMPTS):
89
+ try:
90
+ with open(SAVED_PROMPTS, 'w') as f:
91
+ json.dump([], f)
92
+ os.chmod(SAVED_PROMPTS, 0o664)
93
+ except Exception as e:
94
+ logging.error(f"Failed to create/chmod {SAVED_PROMPTS}: {e}")
95
+ if not os.path.exists(INSTALL_LOG):
96
+ try:
97
+ open(INSTALL_LOG, 'w').close()
98
+ os.chmod(INSTALL_LOG, 0o664)
99
+ except Exception as e:
100
+ logging.error(f"Failed to create/chmod {INSTALL_LOG}: {e}")
101
+ if not os.path.exists(PROMPT_LOG):
102
+ try:
103
+ open(PROMPT_LOG, 'w').close()
104
+ os.chmod(PROMPT_LOG, 0o664)
105
+ except Exception as e:
106
+ logging.error(f"Failed to create/chmod {PROMPT_LOG}: {e}")
107
+ if not os.path.exists(LAST_CLEANUP_FILE):
108
+ try:
109
+ with open(LAST_CLEANUP_FILE, 'w') as f:
110
+ f.write(str(time.time()))
111
+ os.chmod(LAST_CLEANUP_FILE, 0o664)
112
+ except Exception as e:
113
+ logging.error(f"Failed to create/chmod {LAST_CLEANUP_FILE}: {e}")
114
+ if not os.path.exists(VIDEO_INFO_JSON):
115
+ try:
116
+ with open(VIDEO_INFO_JSON, 'w') as f:
117
+ json.dump([], f)
118
+ os.chmod(VIDEO_INFO_JSON, 0o664)
119
+ except Exception as e:
120
+ logging.error(f"Failed to create/chmod {VIDEO_INFO_JSON}: {e}")
121
+
122
+ # ---------------- Prompt utils ---------------------------
123
+ def get_last_prompts():
124
+ try:
125
+ return json.load(open(SAVED_PROMPTS))[-5:][::-1]
126
+ except Exception as e:
127
+ logging.error(f"Failed to load prompts from {SAVED_PROMPTS}: {e}")
128
+ return []
129
+
130
+ def save_prompt_fn(prompt, n_p):
131
+ if not prompt:
132
+ return "❌ No prompt"
133
+ try:
134
+ data = json.load(open(SAVED_PROMPTS))
135
+ entry = {'prompt': prompt, 'negative': n_p}
136
+ if entry not in data:
137
+ data.append(entry)
138
+ with open(SAVED_PROMPTS, 'w') as f:
139
+ json.dump(data, f)
140
+ os.chmod(SAVED_PROMPTS, 0o664)
141
+ return "✅ Saved"
142
+ except Exception as e:
143
+ logging.error(f"Failed to save prompt to {SAVED_PROMPTS}: {e}")
144
+ return "❌ Save failed"
145
+
146
+ def load_prompt_fn(idx):
147
+ lst = get_last_prompts()
148
+ return lst[idx]['prompt'] if idx < len(lst) else ""
149
+
150
+ # ---------------- Cleanup utils --------------------------
151
+ def clear_temp_videos():
152
+ try:
153
+ for f in os.listdir(OUT_TEMP):
154
+ os.remove(os.path.join(OUT_TEMP, f))
155
+ return "✅ Temp cleared"
156
+ except Exception as e:
157
+ logging.error(f"Failed to clear temp videos in {OUT_TEMP}: {e}")
158
+ return "❌ Clear failed"
159
+
160
+ def clear_old_files():
161
+ cutoff = time.time() - 7 * 24 * 3600
162
+ c = 0
163
+ try:
164
+ for d in (OUT_TEMP, OUT_IMG, OUT_VID, OUT_DATA):
165
+ for f in os.listdir(d):
166
+ p = os.path.join(d, f)
167
+ if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
168
+ os.remove(p)
169
+ c += 1
170
+ with open(LAST_CLEANUP_FILE, 'w') as f:
171
+ f.write(str(time.time()))
172
+ os.chmod(LAST_CLEANUP_FILE, 0o664)
173
+ return f"✅ {c} old files removed"
174
+ except Exception as e:
175
+ logging.error(f"Failed to clear old files: {e}")
176
+ return "❌ Clear failed"
177
+
178
+ def clear_images():
179
+ try:
180
+ for f in os.listdir(OUT_IMG):
181
+ os.remove(os.path.join(OUT_IMG, f))
182
+ return "✅ Images cleared"
183
+ except Exception as e:
184
+ logging.error(f"Failed to clear images in {OUT_IMG}: {e}")
185
+ return "❌ Clear failed"
186
+
187
+ def clear_videos():
188
+ try:
189
+ for f in os.listdir(OUT_VID):
190
+ os.remove(os.path.join(OUT_VID, f))
191
+ return "✅ Videos cleared"
192
+ except Exception as e:
193
+ logging.error(f"Failed to clear videos in {OUT_VID}: {e}")
194
+ return "❌ Clear failed"
195
+
196
+ def check_and_run_weekly_cleanup():
197
+ try:
198
+ with open(LAST_CLEANUP_FILE, 'r') as f:
199
+ last_cleanup = float(f.read().strip())
200
+ except (FileNotFoundError, ValueError):
201
+ last_cleanup = 0
202
+ if time.time() - last_cleanup > 7 * 24 * 3600:
203
+ return clear_old_files()
204
+ return ""
205
+
206
+ # ---------------- Gallery helpers ------------------------
207
+ def list_images():
208
+ return sorted(
209
+ [os.path.join(OUT_IMG, f) for f in os.listdir(OUT_IMG) if f.lower().endswith(('.png', '.jpg'))],
210
+ key=os.path.getmtime
211
+ )
212
+
213
+ def list_videos():
214
+ return sorted(
215
+ [os.path.join(OUT_VID, f) for f in os.listdir(OUT_VID) if f.lower().endswith('.mp4')],
216
+ key=os.path.getmtime
217
+ )
218
+
219
+ def load_image(sel):
220
+ imgs = list_images()
221
+ if sel in [os.path.basename(p) for p in imgs]:
222
+ pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
223
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
224
+ return gr.update(), gr.update()
225
+
226
+ def load_video(sel):
227
+ vids = list_videos()
228
+ if sel in [os.path.basename(p) for p in vids]:
229
+ pth = vids[[os.path.basename(p) for p in vids].index(sel)]
230
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
231
+ return gr.update(), gr.update()
232
+
233
+ def next_image_and_load(sel):
234
+ imgs = list_images()
235
+ if not imgs:
236
+ return gr.update(), gr.update()
237
+ names = [os.path.basename(i) for i in imgs]
238
+ idx = (names.index(sel) + 1) % len(names) if sel in names else 0
239
+ pth = imgs[idx]
240
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
241
+
242
+ def next_video_and_load(sel):
243
+ vids = list_videos()
244
+ if not vids:
245
+ return gr.update(), gr.update()
246
+ names = [os.path.basename(v) for v in vids]
247
+ idx = (names.index(sel) + 1) % len(names) if sel in names else 0
248
+ pth = vids[idx]
249
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
250
+
251
+ def gallery_image_select(evt: gr.SelectData):
252
+ imgs = list_images()
253
+ if evt.index is not None and evt.index < len(imgs):
254
+ pth = imgs[evt.index]
255
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
256
+ return gr.update(), gr.update()
257
+
258
+ def gallery_video_select(evt: gr.SelectData):
259
+ vids = list_videos()
260
+ if evt.index is not None and evt.index < len(vids):
261
+ pth = vids[evt.index]
262
+ return gr.update(value=pth), gr.update(value=os.path.basename(pth))
263
+ return gr.update(), gr.update()
264
+
265
+ # ---------------- Install status -------------------------
266
+ def check_mod(n): return importlib.util.find_spec(n) is not None
267
+ def status_xformers(): return "✅ xformers" if check_mod("xformers") else "❌ xformers"
268
+ def status_sage(): return "✅ sage-attn" if check_mod("sageattention") else "❌ sage-attn"
269
+ def status_flash(): return "✅ flash-attn" if check_mod("flash_attn") else "⚠️ flash-attn"
270
+
271
+ def install_pkg(pkg, warn=None):
272
+ if warn:
273
+ print(warn)
274
+ time.sleep(1)
275
+ try:
276
+ out = subprocess.check_output(
277
+ [sys.executable, "-m", "pip", "install", pkg],
278
+ stderr=subprocess.STDOUT, text=True
279
+ )
280
+ res = f"✅ {pkg}\n{out}\n"
281
+ except subprocess.CalledProcessError as e:
282
+ res = f"❌ {pkg}\n{e.output}\n"
283
+ with open(INSTALL_LOG, 'a') as f:
284
+ f.write(f"[{pkg}] {res}")
285
+ return res
286
+
287
+ install_xformers = lambda: install_pkg("xformers")
288
+ install_sage_attn = lambda: install_pkg("sage-attn")
289
+ install_flash_attn = lambda: install_pkg("flash-attn", "⚠️ long compile")
290
+ refresh_logs = lambda: open(INSTALL_LOG).read()
291
+ clear_logs = lambda: (open(INSTALL_LOG, 'w').close() or "✅ Logs cleared")
292
+
293
+ # ---------------- Model load -----------------------------
294
+ free_mem = get_cuda_free_memory_gb(gpu)
295
+ hv = free_mem > 60
296
+
297
+ try:
298
+ text_encoder = LlamaModel.from_pretrained(
299
+ "hunyuanvideo-community/HunyuanVideo",
300
+ subfolder='text_encoder', torch_dtype=torch.float16
301
+ ).cpu().eval()
302
+ text_encoder_2 = CLIPTextModel.from_pretrained(
303
+ "hunyuanvideo-community/HunyuanVideo",
304
+ subfolder='text_encoder_2', torch_dtype=torch.float16
305
+ ).cpu().eval()
306
+ tokenizer = LlamaTokenizerFast.from_pretrained(
307
+ "hunyuanvideo-community/HunyuanVideo",
308
+ subfolder='tokenizer'
309
+ )
310
+ tokenizer_2 = CLIPTokenizer.from_pretrained(
311
+ "hunyuanvideo-community/HunyuanVideo",
312
+ subfolder='tokenizer_2'
313
+ )
314
+ vae = AutoencoderKLHunyuanVideo.from_pretrained(
315
+ "hunyuanvideo-community/HunyuanVideo",
316
+ subfolder='vae', torch_dtype=torch.float16
317
+ ).cpu().eval()
318
+ feature_extractor = SiglipImageProcessor.from_pretrained(
319
+ "lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
320
+ )
321
+ image_encoder = SiglipVisionModel.from_pretrained(
322
+ "lllyasviel/flux_redux_bfl",
323
+ subfolder='image_encoder', torch_dtype=torch.float16
324
+ ).cpu().eval()
325
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
326
+ "lllyasviel/FramePack_F1_I2V_HY_20250503",
327
+ torch_dtype=torch.bfloat16
328
+ ).cpu().eval()
329
+ except Exception as e:
330
+ logging.error(f"Failed to load models: {e}")
331
+ raise
332
+
333
+ if not hv:
334
+ vae.enable_slicing()
335
+ vae.enable_tiling()
336
+
337
+ transformer.high_quality_fp32_output_for_inference = True
338
+ transformer.to(dtype=torch.bfloat16)
339
+
340
+ for m in (vae, image_encoder, text_encoder, text_encoder_2):
341
+ m.to(dtype=torch.float16)
342
+ for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
343
+ m.requires_grad_(False)
344
+
345
+ if not hv:
346
+ DynamicSwapInstaller.install_model(transformer, device=gpu)
347
+ DynamicSwapInstaller.install_model(text_encoder, device=gpu)
348
+ else:
349
+ for m in (text_encoder, text_encoder_2, image_encoder, vae, transformer):
350
+ m.to(gpu)
351
+
352
+ class AsyncStream:
353
+ def __init__(self):
354
+ self.input_queue = Queue()
355
+ self.output_queue = Queue()
356
+ self.stop_event = Event()
357
+
358
+ def put(self, item):
359
+ self.output_queue.put(item)
360
+
361
+ def get(self):
362
+ return self.output_queue.get()
363
+
364
+ def is_stopped(self):
365
+ return self.stop_event.is_set()
366
+
367
+ def stop(self):
368
+ self.stop_event.set()
369
+ self.input_queue.put("end")
370
+
371
+ # ---------------- Worker -------------------------------
372
+ @torch.no_grad()
373
+ def worker(img, prompt, n_p, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action="Static Camera"):
374
+ global render_progress, render_status, render_times, start_render_time, stream
375
+ start_render_time = time.time()
376
+ render_status = "rendering"
377
+ render_progress = 0.0
378
+ stream = AsyncStream()
379
+
380
+ # Validate prompt for smoothness, stop, and silence, and append camera action
381
+ if "stop" not in prompt.lower() and secs > 5:
382
+ prompt += " The subject stops moving after 5 seconds."
383
+ if "smooth" not in prompt.lower():
384
+ prompt = f"Smooth animation: {prompt}"
385
+ if "silent" not in prompt.lower():
386
+ prompt += ", silent"
387
+ prompt = update_prompt(prompt, camera_action)
388
+ if len(prompt.split()) > 50:
389
+ print("Warning: Complex prompt may slow rendering or cause instability.")
390
+
391
+ # Check VRAM availability
392
+ if get_cuda_free_memory_gb(gpu) < 2:
393
+ render_status = "error"
394
+ logging.error("Low VRAM (<2GB). Lower 'kee' or 'win'.")
395
+ raise Exception("Low VRAM (<2GB). Lower 'kee' or 'win'.")
396
+
397
+ sections = max(round((secs * 30) / (win * 4)), 1)
398
+ jid = generate_timestamp()
399
+ try:
400
+ with open(PROMPT_LOG, 'a') as f:
401
+ f.write(f"{jid}\t{prompt}\t{n_p}\n")
402
+ os.chmod(PROMPT_LOG, 0o664)
403
+ except Exception as e:
404
+ logging.error(f"Failed to write to {PROMPT_LOG}: {e}")
405
+ stream.put(('progress', (None, "", ProgressBar().make_progress_bar_html(0, "Start"))))
406
+ try:
407
+ if not hv:
408
+ unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
409
+ fake_diffusers_current_device(text_encoder, gpu)
410
+ load_model_as_complete(text_encoder_2, gpu)
411
+ lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
412
+ if cfg == 1:
413
+ lv_n = torch.zeros_like(lv)
414
+ cp_n = torch.zeros_like(cp)
415
+ else:
416
+ lv_n, cp_n = encode_prompt_conds(n_p, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
417
+ lv, m = crop_or_pad_yield_mask(lv, 512)
418
+ lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
419
+ lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
420
+ H, W, _ = img.shape
421
+ h, w = find_nearest_bucket(H, W, 640)
422
+ img_np = resize_and_center_crop(img, w, h)
423
+ img_filename = f"{jid}.png"
424
+ try:
425
+ Image.fromarray(img_np).save(os.path.join(OUT_IMG, img_filename))
426
+ os.chmod(os.path.join(OUT_IMG, img_filename), 0o664)
427
+ except Exception as e:
428
+ logging.error(f"Failed to save image {img_filename}: {e}")
429
+ raise
430
+ img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
431
+ if not hv:
432
+ load_model_as_complete(vae, gpu)
433
+ start_lat = vae_encode(img_pt, vae)
434
+ if not hv:
435
+ load_model_as_complete(image_encoder, gpu)
436
+ img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
437
+ gen = torch.Generator("cpu").manual_seed(seed)
438
+ hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float32).cpu()
439
+ hist_px = None
440
+ total = 0
441
+ pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))
442
+ section_index = 0
443
+ for pad in pad_seq:
444
+ if stream.is_stopped():
445
+ render_status = "stopped"
446
+ stream.put(("stopped", None))
447
+ return None
448
+ last = pad == 0
449
+ pad_sz = pad * win
450
+ idx = torch.arange(0, sum([1, pad_sz, win, 1, 2, 16]))[None]
451
+ a, b, c, d, e, f = idx.split([1, pad_sz, win, 1, 2, 16], 1)
452
+ clean_idx = torch.cat([a, d], 1)
453
+ pre = start_lat.to(hist_lat)
454
+ post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2)
455
+ clean = torch.cat([pre, post], 2)
456
+ if not hv:
457
+ unload_complete_models()
458
+ move_model_to_device_with_memory_preservation(transformer, gpu, keep)
459
+ transformer.initialize_teacache(tea, stp)
460
+ def cb(d):
461
+ global render_progress
462
+ pv = vae_decode_fake(d["denoised"])
463
+ pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
464
+ pv = einops.rearrange(pv, "b c t h w->(b h)(t w)c")
465
+ cur = d["i"] + 1
466
+ render_progress = (cur / stp) * 100
467
+ stream.put(('progress', (pv, f"{cur}/{stp}", ProgressBar().make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}"))))
468
+ if stream.is_stopped():
469
+ stream.put(("stopped", None))
470
+ raise KeyboardInterrupt
471
+ new_lat = sample_hunyuan(
472
+ transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3,
473
+ real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
474
+ num_inference_steps=stp, generator=gen,
475
+ prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
476
+ negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
477
+ device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
478
+ latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
479
+ clean_latents_2x=two, clean_latent_2x_indices=e,
480
+ clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
481
+ )
482
+ if last:
483
+ new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
484
+ total += new_lat.shape[2]
485
+ hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
486
+ if not hv:
487
+ offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
488
+ load_model_as_complete(vae, gpu)
489
+ real = hist_lat[:, :, :total]
490
+ if hist_px is None:
491
+ hist_px = vae_decode(real, vae).cpu()
492
+ else:
493
+ overlap = win * 4 - 3
494
+ curr = vae_decode(real[:, :, :win * 2], vae).cpu()
495
+ hist_px = soft_append_bcthw(curr, hist_px, overlap)
496
+ if not hv:
497
+ unload_complete_models()
498
+ tmp_filename = f"{jid}_{total}.mp4"
499
+ tmp = os.path.join(OUT_TEMP, tmp_filename)
500
+ try:
501
+ save_bcthw_as_mp4(hist_px, tmp, fps=30, crf=crf)
502
+ os.chmod(tmp, 0o664)
503
+ except Exception as e:
504
+ logging.error(f"Failed to save video {tmp}: {e}")
505
+ raise
506
+ stream.put(('file', tmp))
507
+ section_index += 1
508
+ if last:
509
+ fin_filename = f"{jid}_{total}.mp4"
510
+ fin = os.path.join(OUT_VID, fin_filename)
511
+ try:
512
+ os.replace(tmp, fin)
513
+ os.chmod(fin, 0o664)
514
+ save_video_info(prompt, n_p, fin_filename, seed, secs, None)
515
+ stream.put(('complete', fin))
516
+ render_status = "complete"
517
+ end_time = time.time()
518
+ render_time = end_time - start_render_time
519
+ render_times.append(render_time)
520
+ if len(render_times) > 3:
521
+ render_times.pop(0)
522
+ return fin
523
+ except Exception as e:
524
+ logging.error(f"Failed to finalize video {fin}: {e}")
525
+ raise
526
+ except Exception as e:
527
+ traceback.print_exc()
528
+ render_status = "error"
529
+ stream.put(("stopped", str(e)))
530
+ logging.error(f"Worker failed: {e}")
531
+ return None
532
+ finally:
533
+ render_progress = 0.0
534
+ start_render_time = None
535
+
536
+ @torch.no_grad()
537
+ def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf):
538
+ global stream
539
+ if img is None:
540
+ yield None, None, "Please upload an image to proceed.", "", gr.update(interactive=False), gr.update(interactive=True)
541
+ return
542
+ yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
543
+ loop = asyncio.new_event_loop()
544
+ asyncio.set_event_loop(loop)
545
+ try:
546
+ future = loop.run_in_executor(None, lambda: worker(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf))
547
+ out, log = None, ""
548
+ while True:
549
+ try:
550
+ if stream and not stream.output_queue.empty():
551
+ flag, data = stream.get()
552
+ if flag == "file":
553
+ out = data
554
+ yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
555
+ elif flag == "progress":
556
+ pv, desc, html = data
557
+ log = desc
558
+ yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True)
559
+ elif flag in ("complete", "stopped", "end"):
560
+ yield out, gr.update(visible=False), gr.update(), "", gr.update(interactive=True), gr.update(interactive=False)
561
+ break
562
+ except Exception as e:
563
+ logging.error(f"Error in process queue: {e}")
564
+ yield None, gr.update(visible=False), "Error occurred during processing.", "", gr.update(interactive=True), gr.update(interactive=False)
565
+ break
566
+ finally:
567
+ loop.close()
568
+
569
+ def end_process():
570
+ if stream:
571
+ stream.stop()
572
+
573
+ # ------------------- UI ------------------------------
574
+ quick_prompts = [
575
+ ["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
576
+ ["Smooth animation: A character moves for 5 seconds, static camera, silent."]
577
+ ]
578
+ css = """
579
+ .orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
580
+ .load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
581
+ .big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
582
+ .styled-dropdown{width:250px;padding:5px;border-radius:4px;}
583
+ .viewer-column{width:100%;max-width:900px;margin:0 auto;}
584
+ .media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
585
+ .media-container{display:flex;gap:20px;align-items:flex-start;}
586
+ .control-box{min-width:220px;}
587
+ .control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
588
+ .image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
589
+ .image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
590
+ .image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
591
+ .video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
592
+ .video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
593
+ .video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
594
+ .stop-button {background-color: #ff4d4d !important; color: white !important;}
595
+ .progress-bar {
596
+ width: 100%;
597
+ height: 20px;
598
+ background-color: #444;
599
+ border-radius: 10px;
600
+ overflow: hidden;
601
+ }
602
+ .progress-bar-fill {
603
+ height: 100%;
604
+ background-color: #ff6200;
605
+ border-radius: 10px;
606
+ transition: width 0.3s ease-in-out;
607
+ }
608
+ """
609
+
610
+ blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue()
611
+ with blk:
612
+ gr.Markdown("# 👻 GhostPack F1 Pro")
613
+ with gr.Tabs():
614
+
615
+ with gr.TabItem("👻 Generate"):
616
+ with gr.Row():
617
+ with gr.Column():
618
+ img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
619
+ generate_button = gr.Button("Generate Video", elem_id="generate_button")
620
+ stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button")
621
+ prm = gr.Textbox(
622
+ label="Prompt",
623
+ value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent",
624
+ elem_id="prompt_input"
625
+ )
626
+ npr = gr.Textbox(
627
+ label="Negative Prompt",
628
+ value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth",
629
+ elem_id="negative_prompt_input"
630
+ )
631
+ save_msg = gr.Markdown("")
632
+ btn_save = gr.Button("Save Prompt")
633
+ btn1, btn2, btn3 = gr.Button("Load Most Recent"), gr.Button("Load 2nd Recent"), gr.Button("Load 3rd Recent")
634
+ ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
635
+ ds.click(lambda x: x[0], [ds], [prm])
636
+ btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
637
+ btn1.click(lambda: load_prompt_fn(0), [], [prm])
638
+ btn2.click(lambda: load_prompt_fn(1), [], [prm])
639
+ btn3.click(lambda: load_prompt_fn(2), [], [prm])
640
+ with gr.Column():
641
+ pv = gr.Image(label="Next Latents", height=200, visible=False)
642
+ vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
643
+ log_md = gr.Markdown("")
644
+ bar = gr.HTML("")
645
+ with gr.Column():
646
+ se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input")
647
+ sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=120, value=5, step=0.1, elem_id="video_length_input")
648
+ win = gr.Slider(label="Latent Window", minimum=1, maximum=33, value=5, step=1, elem_id="latent_window_input")
649
+ stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input")
650
+ cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1, step=0.01, elem_id="cfg_input", visible=False)
651
+ gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=7, step=0.1, elem_id="distilled_cfg_input")
652
+ rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.7, step=0.01, elem_id="cfg_rescale_input")
653
+ kee = gr.Slider(label="GPU Keep (GB)", minimum=4, maximum=free_mem, value=6, step=0.1, elem_id="gpu_keep_input")
654
+ crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input")
655
+ tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input")
656
+ generate_button.click(
657
+ fn=process,
658
+ inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf],
659
+ outputs=[vid, pv, log_md, bar, generate_button, stop_button]
660
+ )
661
+ stop_button.click(fn=end_process)
662
+ gr.Button("Update Progress").click(
663
+ fn=get_progress,
664
+ outputs=[log_md, bar]
665
+ )
666
+
667
+ with gr.TabItem("🖼️ Image Gallery"):
668
+ with gr.Row(elem_classes="media-container"):
669
+ with gr.Column(scale=3):
670
+ image_preview = gr.Image(
671
+ label="Viewer",
672
+ value=(list_images()[0] if list_images() else None),
673
+ interactive=False, elem_classes="media-preview"
674
+ )
675
+ with gr.Column(elem_classes="control-box"):
676
+ image_dropdown = gr.Dropdown(
677
+ choices=[os.path.basename(i) for i in list_images()],
678
+ value=(os.path.basename(list_images()[0]) if list_images() else None),
679
+ label="Select", elem_classes="styled-dropdown"
680
+ )
681
+ with gr.Row(elem_classes="control-grid"):
682
+ load_btn = gr.Button("Load", elem_classes="load-button")
683
+ next_btn = gr.Button("Next", elem_classes="load-button")
684
+ with gr.Row(elem_classes="control-grid"):
685
+ refresh_btn = gr.Button("Refresh")
686
+ delete_btn = gr.Button("Delete", elem_classes="orange-button")
687
+ image_gallery = gr.Gallery(
688
+ value=list_images(), label="Thumbnails", columns=6, height=360,
689
+ allow_preview=False, type="filepath", elem_classes="image-gallery"
690
+ )
691
+ load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
692
+ next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
693
+ refresh_btn.click(
694
+ lambda: (
695
+ gr.update(choices=[os.path.basename(i) for i in list_images()],
696
+ value=os.path.basename(list_images()[0]) if list_images() else None),
697
+ gr.update(value=list_images()[0] if list_images() else None),
698
+ gr.update(value=list_images())
699
+ ),
700
+ [],
701
+ [image_dropdown, image_preview, image_gallery]
702
+ )
703
+ delete_btn.click(
704
+ lambda sel: (os.remove(os.path.join(OUT_IMG, sel)) if sel else None) or load_image(""),
705
+ [image_dropdown],
706
+ [image_preview, image_dropdown]
707
+ )
708
+ image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
709
+
710
+ with gr.TabItem("🎬 Video Gallery"):
711
+ with gr.Row(elem_classes="media-container"):
712
+ with gr.Column(scale=3):
713
+ video_preview = gr.Video(
714
+ label="Viewer",
715
+ value=(list_videos()[0] if list_videos() else None),
716
+ autoplay=True, loop=True, interactive=False, elem_classes="media-preview"
717
+ )
718
+ with gr.Column(elem_classes="control-box"):
719
+ video_dropdown = gr.Dropdown(
720
+ choices=[os.path.basename(v) for v in list_videos()],
721
+ value=(os.path.basename(list_videos()[0]) if list_videos() else None),
722
+ label="Select", elem_classes="styled-dropdown"
723
+ )
724
+ with gr.Row(elem_classes="control-grid"):
725
+ load_vbtn = gr.Button("Load", elem_classes="load-button")
726
+ next_vbtn = gr.Button("Next", elem_classes="load-button")
727
+ with gr.Row(elem_classes="control-grid"):
728
+ refresh_v = gr.Button("Refresh")
729
+ delete_v = gr.Button("Delete", elem_classes="orange-button")
730
+ video_gallery = gr.Gallery(
731
+ value=list_videos(), label="Thumbnails", columns=6, height=360,
732
+ allow_preview=False, type="filepath", elem_classes="video-gallery"
733
+ )
734
+ load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
735
+ next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
736
+ refresh_v.click(
737
+ lambda: (
738
+ gr.update(choices=[os.path.basename(v) for v in list_videos()],
739
+ value=os.path.basename(list_videos()[0]) if list_videos() else None),
740
+ gr.update(value=list_videos()[0] if list_videos() else None),
741
+ gr.update(value=list_videos())
742
+ ),
743
+ [],
744
+ [video_dropdown, video_preview, video_gallery]
745
+ )
746
+ delete_v.click(
747
+ lambda sel: (os.remove(os.path.join(OUT_VID, sel)) if sel else None) or load_video(""),
748
+ [video_dropdown],
749
+ [video_preview, video_dropdown]
750
+ )
751
+ video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
752
+
753
+ with gr.TabItem("👻 About"):
754
+ gr.Markdown("## GhostPack F1 Pro")
755
+ with gr.Row():
756
+ with gr.Column():
757
+ gr.Markdown("**🛠️ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
758
+ with gr.Column():
759
+ gr.Markdown(f"**📦 Version**\n{VERSION}")
760
+ with gr.Column():
761
+ gr.Markdown("**✍️ Author**\nGhostAI")
762
+ with gr.Column():
763
+ gr.Markdown("**🔗 Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
764
+
765
+ with gr.TabItem("⚙️ Settings"):
766
+ ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
767
+ ctmsg = gr.Markdown("")
768
+ co = gr.Button("Clear Old", elem_classes="big-setting-button")
769
+ comsg = gr.Markdown("")
770
+ ci = gr.Button("Clear Images", elem_classes="big-setting-button")
771
+ cimg = gr.Markdown("")
772
+ cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
773
+ cvid = gr.Markdown("")
774
+ ct.click(clear_temp_videos, [], ctmsg)
775
+ co.click(clear_old_files, [], comsg)
776
+ ci.click(clear_images, [], cimg)
777
+ cv.click(clear_videos, [], cvid)
778
+
779
+ with gr.TabItem("🛠️ Install"):
780
+ xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
781
+ bx = gr.Button("Install xformers", elem_classes="big-setting-button")
782
+ ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
783
+ bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
784
+ fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn")
785
+ bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
786
+ bx.click(install_xformers, [], xs)
787
+ bs.click(install_sage_attn, [], ss)
788
+ bf.click(install_flash_attn, [], fs)
789
+
790
+ with gr.TabItem("📜 Logs"):
791
+ logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
792
+ rl = gr.Button("Refresh", elem_classes="big-setting-button")
793
+ cl = gr.Button("Clear", elem_classes="big-setting-button")
794
+ rl.click(refresh_logs, [], logs)
795
+ cl.click(clear_logs, [], logs)
796
+
797
+ # Force video previews to seek to 2s
798
+ gr.HTML("""
799
+ <script>
800
+ document.querySelectorAll('.video-gallery video').forEach(v => {
801
+ v.addEventListener('loadedmetadata', () => {
802
+ if (v.duration > 2) v.currentTime = 2;
803
+ });
804
+ });
805
+ </script>
806
+ """)
807
+
808
+ # Camera action update
809
+ camera_action_input = gr.Dropdown(
810
+ choices=[
811
+ "Static Camera",
812
+ "Slight Orbit Left",
813
+ "Slight Orbit Right",
814
+ "Slight Orbit Up",
815
+ "Slight Orbit Down",
816
+ "Top-Down View",
817
+ "Slight Zoom In",
818
+ "Slight Zoom Out"
819
+ ],
820
+ label="Camera Action",
821
+ value="Static Camera",
822
+ elem_id="camera_action_input",
823
+ info="Select a camera movement to append to the prompt."
824
+ )
825
+ camera_action_input.change(
826
+ fn=lambda prompt, camera_action: update_prompt(prompt, camera_action),
827
+ inputs=[prm, camera_action_input],
828
+ outputs=prm
829
+ )
830
+
831
+ def update_prompt(prompt, camera_action):
832
+ # Remove existing camera action from prompt
833
+ camera_actions = [
834
+ "static camera", "slight camera orbit left", "slight camera orbit right",
835
+ "slight camera orbit up", "slight camera orbit down", "top-down view",
836
+ "slight camera zoom in", "slight camera zoom out"
837
+ ]
838
+ for action in camera_actions:
839
+ prompt = re.sub(rf',\s*{re.escape(action)}\b', '', prompt, flags=re.IGNORECASE).strip()
840
+ # Append selected camera action
841
+ if camera_action and camera_action != "None":
842
+ camera_phrase = f", {camera_action.lower()}"
843
+ if len(prompt.split()) + len(camera_phrase.split()) <= 50:
844
+ return prompt + camera_phrase
845
+ else:
846
+ logging.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}")
847
+ return prompt
848
+
849
+ def get_progress():
850
+ markdown_text = f"Status: {render_status}\nProgress: {render_progress:.1f}%\nLast Render Time: {render_times[-1] if render_times else 0:.1f}s"
851
+ progress_bar_html = ProgressBar().make_progress_bar_html(int(render_progress), f"{int(render_progress)}%")
852
+ return markdown_text, progress_bar_html
853
+
854
+ class ProgressBar:
855
+ def make_progress_bar_css(self):
856
+ return """
857
+ .progress-bar {
858
+ width: 100%;
859
+ height: 20px;
860
+ background-color: #444;
861
+ border-radius: 10px;
862
+ overflow: hidden;
863
+ }
864
+ .progress-bar-fill {
865
+ height: 100%;
866
+ background-color: #ff6200;
867
+ border-radius: 10px;
868
+ transition: width 0.3s ease-in-out;
869
+ }
870
+ """
871
+
872
+ def make_progress_bar_html(self, percentage, label):
873
+ css = self.make_progress_bar_css()
874
+ fill_width = f"{percentage}%"
875
+ html = f"""
876
+ <style>{css}</style>
877
+ <div class="progress-bar">
878
+ <div class="progress-bar-fill" style="width: {fill_width};">
879
+ <span style="color: white; position: absolute; margin-left: 10px;">{label}</span>
880
+ </div>
881
+ </div>
882
+ """
883
+ return html
884
+
885
+ blk.launch(
886
+ server_name=args.server,
887
+ server_port=args.port,
888
+ share=args.share,
889
+ inbrowser=args.inbrowser
890
+ )