ghostai1 commited on
Commit
8bd6cf9
·
verified ·
1 Parent(s): c6591ed

Delete ghostpack.py

Browse files
Files changed (1) hide show
  1. ghostpack.py +0 -232
ghostpack.py DELETED
@@ -1,232 +0,0 @@
1
- # ==========================================================
2
- # FILE: ghostpack.py
3
- # ==========================================================
4
- #!/usr/bin/env python3
5
- # ---------------------------------------------------------------------------
6
- # RELEASE – GhostPack Image-to-Video Generator
7
- # ---------------------------------------------------------------------------
8
- import os, sys, argparse, traceback
9
- import numpy as np, torch, einops, gradio as gr
10
- from PIL import Image
11
- from diffusers_helper.hf_login import login
12
- from diffusers import AutoencoderKLHunyuanVideo
13
- from transformers import (
14
- LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
15
- SiglipImageProcessor, SiglipVisionModel,
16
- )
17
- from diffusers_helper.hunyuan import (
18
- encode_prompt_conds, vae_encode, vae_decode, vae_decode_fake,
19
- )
20
- from diffusers_helper.utils import (
21
- save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw,
22
- resize_and_center_crop, generate_timestamp,
23
- )
24
- from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
25
- from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
26
- from diffusers_helper.memory import (
27
- gpu, get_cuda_free_memory_gb, DynamicSwapInstaller,
28
- unload_complete_models, load_model_as_complete,
29
- fake_diffusers_current_device, move_model_to_device_with_memory_preservation,
30
- offload_model_from_device_for_memory_preservation,
31
- )
32
- from diffusers_helper.thread_utils import AsyncStream, async_run
33
- from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
34
- from diffusers_helper.clip_vision import hf_clip_vision_encode
35
- from diffusers_helper.bucket_tools import find_nearest_bucket
36
-
37
- BASE = os.path.abspath(os.path.dirname(__file__))
38
- CACHE = os.path.join(BASE, "hf_download")
39
- os.makedirs(CACHE, exist_ok=True)
40
- for v in ("HF_HOME", "TRANSFORMERS_CACHE", "HF_DATASETS_CACHE"): os.environ[v] = CACHE
41
- os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
42
-
43
- p = argparse.ArgumentParser()
44
- p.add_argument("--share", action="store_true")
45
- p.add_argument("--server", default="0.0.0.0")
46
- p.add_argument("--port", type=int, default=7860)
47
- p.add_argument("--inbrowser", action="store_true")
48
- args = p.parse_args()
49
-
50
- free_gb = get_cuda_free_memory_gb(gpu)
51
- hi_vram = free_gb > 60
52
- print(f"[GhostPack] Free VRAM: {free_gb:.1f} GB | High-VRAM: {hi_vram}")
53
-
54
- def llm(sub): return LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
55
- def clip(sub): return CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder=sub, torch_dtype=torch.float16).cpu().eval()
56
-
57
- text_enc = llm("text_encoder")
58
- text_enc2 = clip("text_encoder_2")
59
- tok = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer")
60
- tok2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2")
61
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16).cpu().eval()
62
- feat_ext = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="feature_extractor")
63
- img_enc = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16).cpu().eval()
64
- trans = HunyuanVideoTransformer3DModelPacked.from_pretrained("lllyasviel/FramePackI2V_HY", torch_dtype=torch.bfloat16).cpu().eval()
65
- trans.high_quality_fp32_output_for_inference = True
66
-
67
- if not hi_vram:
68
- vae.enable_slicing(); vae.enable_tiling()
69
- else:
70
- for m in (text_enc, text_enc2, img_enc, vae, trans): m.to(gpu)
71
-
72
- trans.to(dtype=torch.bfloat16)
73
- for m in (vae, img_enc, text_enc, text_enc2): m.to(dtype=torch.float16)
74
- for m in (vae, img_enc, text_enc, text_enc2, trans): m.requires_grad_(False)
75
-
76
- if not hi_vram:
77
- DynamicSwapInstaller.install_model(trans, device=gpu)
78
- DynamicSwapInstaller.install_model(text_enc, device=gpu)
79
-
80
- OUT = os.path.join(BASE, "outputs")
81
- os.makedirs(OUT, exist_ok=True)
82
- stream = AsyncStream()
83
-
84
- @torch.no_grad()
85
- def worker(img, p, n_p, sd, secs, win, stp, cfg, gsc, rsc, keep, tea, crf):
86
- sections = max(round((secs*30)/(win*4)), 1)
87
- job = generate_timestamp()
88
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Start"))))
89
- try:
90
- if not hi_vram: unload_complete_models(text_enc, text_enc2, img_enc, vae, trans)
91
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Text enc"))))
92
- if not hi_vram:
93
- fake_diffusers_current_device(text_enc, gpu)
94
- load_model_as_complete(text_enc2, gpu)
95
- lv, cp = encode_prompt_conds(p, text_enc, text_enc2, tok, tok2)
96
- lv_n, cp_n = (torch.zeros_like(lv), torch.zeros_like(cp)) if cfg==1 else encode_prompt_conds(n_p, text_enc, text_enc2, tok, tok2)
97
- lv, m = crop_or_pad_yield_mask(lv,512)
98
- lv_n, m_n= crop_or_pad_yield_mask(lv_n,512)
99
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Image"))))
100
- H,W,_ = img.shape; h,w = find_nearest_bucket(H,W,640)
101
- img_np = resize_and_center_crop(img,w,h)
102
- Image.fromarray(img_np).save(os.path.join(OUT,f"{job}.png"))
103
- img_pt = torch.from_numpy(img_np).float()/127.5-1; img_pt = img_pt.permute(2,0,1)[None,:,None]
104
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"VAE"))))
105
- if not hi_vram: load_model_as_complete(vae, gpu)
106
- start_lat = vae_encode(img_pt, vae)
107
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Vision"))))
108
- if not hi_vram: load_model_as_complete(img_enc, gpu)
109
- img_hidden = hf_clip_vision_encode(img_np, feat_ext, img_enc).last_hidden_state
110
- to = trans.dtype
111
- lv, lv_n, cp, cp_n, img_hidden = (x.to(to) for x in (lv, lv_n, cp, cp_n, img_hidden))
112
- stream.output_queue.push(("progress",(None,"",make_progress_bar_html(0,"Sample"))))
113
- gen = torch.Generator("cpu").manual_seed(sd)
114
- frames = win*4-3
115
- hist_lat = torch.zeros((1,16,1+2+16,h//8,w//8), dtype=torch.float32).cpu()
116
- hist_px=None; total=0
117
- pad_seq=[3]+[2]*(sections-3)+[1,0] if sections>4 else list(reversed(range(sections)))
118
- for pad in pad_seq:
119
- last = pad==0
120
- if stream.input_queue.top()=="end": stream.output_queue.push(("end",None)); return
121
- pad_sz=pad*win
122
- idx=torch.arange(0,sum([1,pad_sz,win,1,2,16])).unsqueeze(0)
123
- a,b,c,d,e,f = idx.split([1,pad_sz,win,1,2,16],1)
124
- clean_idx = torch.cat([a,d],1)
125
- pre=start_lat.to(hist_lat); post,two,four=hist_lat[:,:,:1+2+16].split([1,2,16],2)
126
- clean=torch.cat([pre,post],2)
127
- if not hi_vram:
128
- unload_complete_models()
129
- move_model_to_device_with_memory_preservation(trans,gpu,keep)
130
- trans.initialize_teacache(tea,stp)
131
- def cb(d):
132
- pv = vae_decode_fake(d["denoised"])
133
- pv = (pv*255).cpu().numpy().clip(0,255).astype(np.uint8)
134
- pv = einops.rearrange(pv,"b c t h w->(b h)(t w)c")
135
- cur = d["i"]+1
136
- stream.output_queue.push(("progress",(pv,f"{total*4-3}f",make_progress_bar_html(int(100*cur/stp),f"{cur}/{stp}"))))
137
- if stream.input_queue.top()=="end":
138
- stream.output_queue.push(("end",None)); raise KeyboardInterrupt
139
- new_lat = sample_hunyuan(
140
- transformer=trans,sampler="unipc",width=w,height=h,frames=frames,
141
- real_guidance_scale=cfg,distilled_guidance_scale=gsc,guidance_rescale=rsc,
142
- num_inference_steps=stp,generator=gen,
143
- prompt_embeds=lv,prompt_embeds_mask=m,prompt_poolers=cp,
144
- negative_prompt_embeds=lv_n,negative_prompt_embeds_mask=m_n,negative_prompt_poolers=cp_n,
145
- device=gpu,dtype=torch.bfloat16,image_embeddings=img_hidden,
146
- latent_indices=c,clean_latents=clean,clean_latent_indices=clean_idx,
147
- clean_latents_2x=two,clean_latent_2x_indices=e,clean_latents_4x=four,clean_latent_4x_indices=f,
148
- callback=cb,
149
- )
150
- if last: new_lat=torch.cat([start_lat.to(new_lat),new_lat],2)
151
- total+=new_lat.shape[2]; hist_lat=torch.cat([new_lat.to(hist_lat),hist_lat],2)
152
- if not hi_vram:
153
- offload_model_from_device_for_memory_preservation(trans,gpu,8)
154
- load_model_as_complete(vae,gpu)
155
- real=hist_lat[:,:,:total]
156
- if hist_px is None:
157
- hist_px = vae_decode(real,vae).cpu()
158
- else:
159
- sec_lat=win*2+1 if last else win*2
160
- cur_px = vae_decode(real[:,:,:sec_lat],vae).cpu()
161
- hist_px = soft_append_bcthw(cur_px,hist_px,win*4-3)
162
- if not hi_vram: unload_complete_models()
163
- mp4=os.path.join(OUT,f"{job}_{total}.mp4")
164
- save_bcthw_as_mp4(hist_px,mp4,fps=30,crf=crf)
165
- stream.output_queue.push(("file",mp4))
166
- if last: break
167
- except Exception:
168
- traceback.print_exc(); stream.output_queue.push(("end",None))
169
-
170
- def ui():
171
- css = make_progress_bar_css()+"""
172
- body,.gradio-container,.gr-block{background:#121212;color:#eee}
173
- .gr-button,.gr-button-primary{background:#006400;border:#006400}
174
- .gr-button:hover,.gr-button-primary:hover{background:#00aa00;border:#00aa00}
175
- input,textarea,.gr-input,.gr-textbox,.gr-slider,.gr-number{background:#1e1e1e;color:#eee;border-color:#006400}
176
- """
177
- quick=[["The girl dances gracefully, with clear movements, full of charm."],
178
- ["A character doing some simple body movements."]]
179
- blk=gr.Blocks(css=css).queue()
180
- with blk:
181
- gr.Markdown("# 👻 GhostPack Demo")
182
- with gr.Row():
183
- with gr.Column():
184
- img=gr.Image(sources="upload",type="numpy",label="Image",height=320)
185
- prm=gr.Textbox(label="Prompt")
186
- ds=gr.Dataset(samples=quick,label="Quick List",components=[prm])
187
- ds.click(lambda x:x[0],inputs=[ds],outputs=prm)
188
- with gr.Row():
189
- b_go=gr.Button("Start"); b_end=gr.Button("End",interactive=False)
190
- with gr.Group():
191
- tea=gr.Checkbox(label="Use TeaCache",value=True)
192
- npr=gr.Textbox(label="Negative Prompt",visible=False)
193
- se=gr.Number(label="Seed",value=31337,precision=0)
194
- sec=gr.Slider(label="Video Length (s)",minimum=1,maximum=120,value=5,step=0.1)
195
- win=gr.Slider(label="Latent Window",minimum=1,maximum=33,value=9,step=1,visible=False)
196
- stp=gr.Slider(label="Steps",minimum=1,maximum=100,value=25,step=1)
197
- cfg=gr.Slider(label="CFG",minimum=1,maximum=32,value=1,step=0.01,visible=False)
198
- gsc=gr.Slider(label="Distilled CFG",minimum=1,maximum=32,value=10,step=0.01)
199
- rsc=gr.Slider(label="CFG Re-Scale",minimum=0,maximum=1,value=0,step=0.01,visible=False)
200
- kee=gr.Slider(label="GPU Keep (GB)",minimum=6,maximum=128,value=6,step=0.1)
201
- crf=gr.Slider(label="MP4 CRF",minimum=0,maximum=100,value=16,step=1)
202
- with gr.Column():
203
- pv=gr.Image(label="Next Latents",height=200,visible=False,interactive=False)
204
- vid=gr.Video(label="Finished",autoplay=True,height=512,loop=True,show_share_button=False)
205
- gr.Markdown("Ending actions appear first; wait for start.")
206
- dsc=gr.Markdown("")
207
- bar=gr.HTML("")
208
- log=gr.Markdown("")
209
- inputs=[img,prm,npr,se,sec,win,stp,cfg,gsc,rsc,kee,tea,crf]
210
- def launch(*xs):
211
- global stream
212
- if xs[0] is None: raise gr.Error("Upload an image.")
213
- yield None,None,"","","",gr.update(interactive=False),gr.update(interactive=True)
214
- stream=AsyncStream()
215
- async_run(worker,*xs)
216
- out=None; log=""
217
- while True:
218
- flag,data=stream.output_queue.next()
219
- if flag=="file":
220
- out=data
221
- yield out,gr.update(),gr.update(),gr.update(),log,gr.update(interactive=False),gr.update(interactive=True)
222
- if flag=="progress":
223
- pv,desc,html=data; log=desc
224
- yield gr.update(),gr.update(visible=True,value=pv),desc,html,log,gr.update(interactive=False),gr.update(interactive=True)
225
- if flag=="end":
226
- yield out,gr.update(visible=False),gr.update(),"",log,gr.update(interactive=True),gr.update(interactive=False); break
227
- b_go.click(launch,inputs,[vid,pv,dsc,bar,log,b_go,b_end])
228
- b_end.click(lambda: stream.input_queue.push("end"))
229
- blk.launch(server_name=args.server,server_port=args.port,share=args.share,inbrowser=args.inbrowser)
230
-
231
- if __name__ == "__main__":
232
- ui()