Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from collections import Counter
|
5 |
+
import threading
|
6 |
+
|
7 |
+
# Initialize sentiment pipeline
|
8 |
+
sentiment_analyzer = pipeline(
|
9 |
+
"sentiment-analysis",
|
10 |
+
model="distilbert-base-uncased-finetuned-sst-2-english"
|
11 |
+
)
|
12 |
+
|
13 |
+
# Thread-safe log storage
|
14 |
+
log_lock = threading.Lock()
|
15 |
+
sentiment_log = []
|
16 |
+
|
17 |
+
def analyze_and_log(text):
|
18 |
+
result = sentiment_analyzer(text)[0]
|
19 |
+
label = result['label']
|
20 |
+
score = round(result['score'], 3)
|
21 |
+
entry = f"Input: {text} --> Sentiment: {label} (Confidence: {score})"
|
22 |
+
|
23 |
+
with log_lock:
|
24 |
+
sentiment_log.append((text, label))
|
25 |
+
|
26 |
+
return label, score, entry, update_chart()
|
27 |
+
|
28 |
+
def update_chart():
|
29 |
+
with log_lock:
|
30 |
+
labels = [label for _, label in sentiment_log]
|
31 |
+
counts = Counter(labels)
|
32 |
+
|
33 |
+
fig, ax = plt.subplots(figsize=(4, 3))
|
34 |
+
ax.bar(counts.keys(), counts.values(), color=['#4CAF50', '#F44336'])
|
35 |
+
ax.set_title("Sentiment Distribution")
|
36 |
+
ax.set_xlabel("Sentiment")
|
37 |
+
ax.set_ylabel("Count")
|
38 |
+
plt.tight_layout()
|
39 |
+
|
40 |
+
return fig
|
41 |
+
|
42 |
+
with gr.Blocks() as demo:
|
43 |
+
gr.Markdown("# DistilBERT Sentiment Analysis with Live Logs & Visualization")
|
44 |
+
gr.Markdown("Enter your salon feedback or product review below and get instant sentiment analysis, logging, and sentiment summary visualization.")
|
45 |
+
|
46 |
+
with gr.Row():
|
47 |
+
with gr.Column(scale=3):
|
48 |
+
input_text = gr.Textbox(lines=3, placeholder="Type your text here...")
|
49 |
+
analyze_btn = gr.Button("Analyze Sentiment")
|
50 |
+
sentiment_label = gr.Textbox(label="Sentiment Label", interactive=False)
|
51 |
+
confidence_score = gr.Textbox(label="Confidence Score", interactive=False)
|
52 |
+
log_output = gr.Textbox(label="Analysis Log", interactive=False, lines=10)
|
53 |
+
|
54 |
+
with gr.Column(scale=2):
|
55 |
+
sentiment_chart = gr.Plot(label="Sentiment Distribution Chart")
|
56 |
+
|
57 |
+
analyze_btn.click(
|
58 |
+
analyze_and_log,
|
59 |
+
inputs=input_text,
|
60 |
+
outputs=[sentiment_label, confidence_score, log_output, sentiment_chart]
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch()
|