Spaces:
Build error
Build error
File size: 62,404 Bytes
86aaa4d 7e988c5 86aaa4d 3ece7a3 86aaa4d 7e988c5 86aaa4d 4266e41 86aaa4d 7e988c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 |
#!/usr/bin/env python3
# FILE: app.py
# Description: Image-to-Video generation server with Gradio UI and FastAPI for Hugging Face Spaces
# Version: 1.2.8
# Timestamp: 2025-07-01 20:41 CDT
# Author: Grok 3, built by xAI (based on GhostAI's ghostpack_gradio_f1.py)
# NOTE: Optimized for Hugging Face Spaces with H200 GPU, 25 min/day render time
# Loads models from Hugging Face Hub to avoid HDD costs
# Uses /data for persistent storage, /tmp for temporary files
# API key authentication for /generate endpoint (off-site use)
# Base64-encoded video responses
# Gradio UI matches original ghostpack_gradio_f1.py
# Idle until triggered by API or Gradio
import os
import sys
import time
import json
import argparse
import importlib.util
import subprocess
import traceback
import torch
import einops
import numpy as np
from PIL import Image
import io
import gradio as gr
import asyncio
import queue
from threading import Thread
import re
import logging
import base64
import socket
import requests
import shutil
import uuid
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, Depends, Security, status
from fastapi.security import APIKeyHeader
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from diffusers import AutoencoderKLHunyuanVideo
from transformers import (
LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer,
SiglipImageProcessor, SiglipVisionModel
)
from diffusers_helper.hunyuan import (
encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
)
from diffusers_helper.utils import (
save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw
)
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
from diffusers_helper.memory import (
gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation,
offload_model_from_device_for_memory_preservation, fake_diffusers_current_device,
DynamicSwapInstaller, unload_complete_models, load_model_as_complete
)
from diffusers_helper.clip_vision import hf_clip_vision_encode
from diffusers_helper.bucket_tools import find_nearest_bucket
from diffusers_helper.thread_utils import AsyncStream
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
# Optional: Colorama for colored console output
try:
from colorama import init, Fore, Style
init(autoreset=True)
COLORAMA_AVAILABLE = True
def red(s): return Fore.RED + s + Style.RESET_ALL
def green(s): return Fore.GREEN + s + Style.RESET_ALL
def yellow(s): return Fore.YELLOW + s + Style.RESET_ALL
def reset_all(s): return Style.RESET_ALL + s
except ImportError:
COLORAMA_AVAILABLE = False
def red(s): return s
def green(s): return s
def yellow(s): return s
def reset_all(s): return s
# Set up logging
logging.basicConfig(
filename="/data/ghostpack.log",
level=logging.DEBUG,
format="%(asctime)s %(levelname)s:%(message)s",
)
logger = logging.getLogger(__name__)
logger.info("Starting GhostPack F1 Pro")
print(f"{green('Using /data/video_info.json for metadata')}")
VERSION = "1.2.8"
HF_TOKEN = os.getenv('HF_TOKEN', 'your-hf-token') # Set in Spaces secrets
API_KEY_NAME = "X-API-Key"
API_KEY = os.getenv('API_KEY', 'your-secret-key') # Set in Spaces secrets
api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False)
# Global job registry
active_jobs = {} # {job_id: AsyncStream}
job_status = {} # {job_id: {"status": str, "progress": float, "render_time": float}}
# CLI
parser = argparse.ArgumentParser(description="GhostPack F1 Pro")
parser.add_argument("--share", action="store_true", help="Share Gradio UI publicly")
parser.add_argument("--server", type=str, default="0.0.0.0", help="Server host")
parser.add_argument("--port", type=int, default=7860, help="FastAPI port")
parser.add_argument("--gradio", action="store_true", help="Enable Gradio UI")
parser.add_argument("--inbrowser", action="store_true", help="Open in browser")
parser.add_argument("--cli", action="store_true", help="Show CLI help")
args = parser.parse_args()
# Global state
render_on_off = True
BASE = os.path.abspath(os.path.dirname(__file__))
os.environ["HF_HOME"] = "/tmp/hf_cache" # Cache models in /tmp
# Check if ports are available
def is_port_in_use(port):
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('0.0.0.0', port)) == 0
if args.cli:
print(f"{green('π» GhostPack F1 Pro CLI')}")
print("python app.py # Launch API")
print("python app.py --gradio # Launch API + Gradio UI")
print("python app.py --cli # Show help")
sys.exit(0)
# Paths
DATA_DIR = "/data"
TMP_DIR = "/tmp/ghostpack"
VIDEO_OUTPUT_DIR = "/tmp/ghostpack/vid"
VIDEO_IMG_DIR = "/tmp/ghostpack/img"
VIDEO_TMP_DIR = "/tmp/ghostpack/tmp_vid"
VIDEO_INFO_FILE = "/data/video_info.json"
PROMPT_LOG_FILE = "/data/prompts.txt"
SAVED_PROMPTS_FILE = "/data/saved_prompts.json"
INSTALL_LOG_FILE = "/data/install_logs.txt"
LAST_CLEANUP_FILE = "/data/last_cleanup.txt"
# Initialize directories
for d in (DATA_DIR, TMP_DIR, VIDEO_OUTPUT_DIR, VIDEO_IMG_DIR, VIDEO_TMP_DIR):
if not os.path.exists(d):
try:
os.makedirs(d, exist_ok=True)
os.chmod(d, 0o775)
logger.debug(f"Created {d}")
except Exception as e:
logger.error(f"Failed to create {d}: {e}")
print(f"{red(f'Error: Failed to create {d}: {e}')}")
sys.exit(1)
# Initialize files
for f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE, PROMPT_LOG_FILE, INSTALL_LOG_FILE, LAST_CLEANUP_FILE):
if not os.path.exists(f):
try:
if f == LAST_CLEANUP_FILE:
with open(f, "w") as fd:
fd.write(str(time.time()))
elif f in (VIDEO_INFO_FILE, SAVED_PROMPTS_FILE):
with open(f, "w") as fd:
json.dump([], fd)
else:
open(f, "w").close()
os.chmod(f, 0o664)
logger.debug(f"Created {f}")
except Exception as e:
logger.error(f"Failed to create/chmod {f}: {e}")
print(f"{red(f'Error: Failed to create/chmod {f}: {e}')}")
sys.exit(1)
# Clear VIDEO_INFO_FILE on startup
try:
with open(VIDEO_INFO_FILE, "w") as f:
json.dump([], f)
os.chmod(VIDEO_INFO_FILE, 0o664)
logger.debug(f"Cleared {VIDEO_INFO_FILE}")
except Exception as e:
logger.error(f"Failed to clear {VIDEO_INFO_FILE}: {e}")
print(f"{red(f'Error: Failed to clear {VIDEO_INFO_FILE}: {e}')}")
sys.exit(1)
# Queue clearing utility
def clear_queue(q):
try:
while True:
if hasattr(q, "get_nowait"):
q.get_nowait()
else:
break
except queue.Empty:
pass
# Prompt utilities
def get_last_prompts():
try:
return json.load(open(SAVED_PROMPTS_FILE))[-5:][::-1]
except Exception as e:
logger.error(f"Failed to load prompts from {SAVED_PROMPTS_FILE}: {e}")
print(f"{red(f'Error: Failed to load prompts: {e}')}")
return []
def save_prompt_fn(prompt, n_p):
if not prompt:
return f"{red('β No prompt')}"
try:
data = json.load(open(SAVED_PROMPTS_FILE))
entry = {"prompt": prompt, "negative": n_p}
if entry not in data:
data.append(entry)
with open(SAVED_PROMPTS_FILE, "w") as f:
json.dump(data, f, indent=2)
os.chmod(SAVED_PROMPTS_FILE, 0o664)
return f"{green('β
Saved')}"
except Exception as e:
logger.error(f"Failed to save prompt to {SAVED_PROMPTS_FILE}: {e}")
print(f"{red(f'Error: Failed to save prompt: {e}')}")
return f"{red('β Save failed')}"
def load_prompt_fn(idx):
lst = get_last_prompts()
return lst[idx]["prompt"] if idx < len(lst) else ""
# Cleanup utilities
def clear_temp_videos():
try:
for f in os.listdir(VIDEO_TMP_DIR):
os.remove(os.path.join(VIDEO_TMP_DIR, f))
return f"{green('β
Temp cleared')}"
except Exception as e:
logger.error(f"Failed to clear temp videos in {VIDEO_TMP_DIR}: {e}")
print(f"{red(f'Error: Failed to clear temp videos: {e}')}")
return f"{red('β Clear failed')}"
def clear_old_files():
cutoff = time.time() - 7 * 24 * 3600
c = 0
try:
for d in (VIDEO_TMP_DIR, VIDEO_IMG_DIR, VIDEO_OUTPUT_DIR):
for f in os.listdir(d):
p = os.path.join(d, f)
if os.path.isfile(p) and os.path.getmtime(p) < cutoff:
os.remove(p)
c += 1
with open(LAST_CLEANUP_FILE, "w") as f:
f.write(str(time.time()))
os.chmod(LAST_CLEANUP_FILE, 0o664)
return f"{green(f'β
{c} old files removed')}"
except Exception as e:
logger.error(f"Failed to clear old files: {e}")
print(f"{red(f'Error: Failed to clear old files: {e}')}")
return f"{red('β Clear failed')}"
def clear_images():
try:
for f in os.listdir(VIDEO_IMG_DIR):
os.remove(os.path.join(VIDEO_IMG_DIR, f))
return f"{green('β
Images cleared')}"
except Exception as e:
logger.error(f"Failed to clear images in {VIDEO_IMG_DIR}: {e}")
print(f"{red(f'Error: Failed to clear images: {e}')}")
return f"{red('β Clear failed')}"
def clear_videos():
try:
for f in os.listdir(VIDEO_OUTPUT_DIR):
os.remove(os.path.join(VIDEO_OUTPUT_DIR, f))
return f"{green('β
Videos cleared')}"
except Exception as e:
logger.error(f"Failed to clear videos in {VIDEO_OUTPUT_DIR}: {e}")
print(f"{red(f'Error: Failed to clear videos: {e}')}")
return f"{red('β Clear failed')}"
def check_and_run_weekly_cleanup():
try:
with open(LAST_CLEANUP_FILE, "r") as f:
last_cleanup = float(f.read().strip())
except (FileNotFoundError, ValueError):
last_cleanup = 0
if time.time() - last_cleanup > 7 * 24 * 3600:
return clear_old_files()
return ""
# Video metadata utilities
def save_video_info(prompt, n_p, filename, seed, secs, additional_info, completed=False):
if not completed:
return
try:
video_info = json.load(open(VIDEO_INFO_FILE))
except (FileNotFoundError, json.JSONDecodeError):
video_info = []
entry = {
"prompt": prompt or "",
"negative_prompt": n_p or "",
"filename": filename,
"location": os.path.join(VIDEO_OUTPUT_DIR, filename),
"seed": seed,
"duration_secs": secs,
"timestamp": time.strftime("%Y%m%d_%H%M%S"),
"completed": completed,
"additional_info": additional_info or {},
}
video_info.append(entry)
try:
with open(VIDEO_INFO_FILE, "w") as f:
json.dump(video_info, f, indent=2)
os.chmod(VIDEO_INFO_FILE, 0o664)
logger.debug(f"Saved video info to {VIDEO_INFO_FILE}")
except Exception as e:
logger.error(f"Failed to save video info to {VIDEO_INFO_FILE}: {e}")
print(f"{red(f'Error: Failed to save video info to {VIDEO_INFO_FILE}: {e}')}")
raise
# Gallery helpers
def list_images():
return sorted(
[os.path.join(VIDEO_IMG_DIR, f) for f in os.listdir(VIDEO_IMG_DIR) if f.lower().endswith((".png", ".jpg"))],
key=os.path.getmtime,
)
def list_videos():
return sorted(
[os.path.join(VIDEO_OUTPUT_DIR, f) for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")],
key=os.path.getmtime,
)
def load_image(sel):
imgs = list_images()
if sel in [os.path.basename(p) for p in imgs]:
pth = imgs[[os.path.basename(p) for p in imgs].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def load_video(sel):
vids = list_videos()
if sel in [os.path.basename(p) for p in vids]:
pth = vids[[os.path.basename(p) for p in vids].index(sel)]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def next_image_and_load(sel):
imgs = list_images()
if not imgs:
return gr.update(), gr.update()
names = [os.path.basename(i) for i in imgs]
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
pth = imgs[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
def next_video_and_load(sel):
vids = list_videos()
if not vids:
return gr.update(), gr.update()
names = [os.path.basename(v) for v in vids]
idx = (names.index(sel) + 1) % len(names) if sel in names else 0
pth = vids[idx]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
def gallery_image_select(evt: gr.SelectData):
imgs = list_images()
if evt.index is not None and evt.index < len(imgs):
pth = imgs[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
def gallery_video_select(evt: gr.SelectData):
vids = list_videos()
if evt.index is not None and evt.index < len(vids):
pth = vids[evt.index]
return gr.update(value=pth), gr.update(value=os.path.basename(pth))
return gr.update(), gr.update()
# Install status
def check_mod(n):
return importlib.util.find_spec(n) is not None
def status_xformers():
print(f"{green('β
Xformers is installed!')}" if check_mod("xformers") else f"{red('β Xformers is not installed!')}")
return f"{green('β
xformers')}" if check_mod("xformers") else f"{red('β xformers')}"
def status_sage():
print(f"{green('β
Sage Attn is installed!')}" if check_mod("sageattention") else f"{red('β Sage Attn is not installed!')}")
return f"{green('β
sage-attn')}" if check_mod("sageattention") else f"{red('β sage-attn')}"
def status_flash():
print(f"{yellow('β οΈ Flash Attn is not installed, performance may be reduced!')}" if not check_mod("flash_attn") else f"{green('β
Flash Attn is installed!')}")
return f"{yellow('β οΈ flash-attn')}" if not check_mod("flash_attn") else f"{green('β
flash-attn')}"
def status_colorama():
return f"{green('β
colorama')}" if COLORAMA_AVAILABLE else f"{red('β colorama')}"
def install_pkg(pkg, warn=None):
if warn:
print(f"{yellow(warn)}")
time.sleep(1)
try:
out = subprocess.check_output(
[sys.executable, "-m", "pip", "install", pkg], stderr=subprocess.STDOUT, text=True
)
res = f"{green(f'β
{pkg}')}\n{out}\n"
except subprocess.CalledProcessError as e:
res = f"{red(f'β {pkg}')}\n{e.output}\n"
with open(INSTALL_LOG_FILE, "a") as f:
f.write(f"[{pkg}] {res}")
return res
install_xformers = lambda: install_pkg("xformers")
install_sage_attn = lambda: install_pkg("sage-attn")
install_flash_attn = lambda: install_pkg("flash-attn", "β οΈ long compile, optional for performance")
install_colorama = lambda: install_pkg("colorama")
refresh_logs = lambda: open(INSTALL_LOG_FILE).read()
clear_logs = lambda: open(INSTALL_LOG_FILE, "w").close() or f"{green('β
Logs cleared')}"
# Model load
free_mem = get_cuda_free_memory_gb(gpu)
hv = free_mem > 60
logger.info(f"VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}")
print(f"{yellow(f'VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}')}")
try:
print(f"{yellow('Loading models...')}")
text_encoder = LlamaModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache"
).cpu().eval()
text_encoder_2 = CLIPTextModel.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="text_encoder_2", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache"
).cpu().eval()
tokenizer = LlamaTokenizerFast.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer", token=HF_TOKEN, cache_dir="/tmp/hf_cache"
)
tokenizer_2 = CLIPTokenizer.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="tokenizer_2", token=HF_TOKEN, cache_dir="/tmp/hf_cache"
)
vae = AutoencoderKLHunyuanVideo.from_pretrained(
"hunyuanvideo-community/HunyuanVideo", subfolder="vae", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache"
).cpu().eval()
feature_extractor = SiglipImageProcessor.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder="feature_extractor", token=HF_TOKEN, cache_dir="/tmp/hf_cache"
)
image_encoder = SiglipVisionModel.from_pretrained(
"lllyasviel/flux_redux_bfl", subfolder="image_encoder", torch_dtype=torch.float16, token=HF_TOKEN, cache_dir="/tmp/hf_cache"
).cpu().eval()
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
"lllyasviel/FramePack_F1_I2V_HY_20250503", torch_dtype=torch.bfloat16, token=HF_TOKEN, cache_dir="/tmp/hf_cache"
).cpu().eval()
logger.info("Models loaded successfully")
print(f"{green('Models loaded successfully')}")
except Exception as e:
logger.error(f"Failed to load models: {e}", exc_info=True)
print(f"{red(f'Error: Failed to load models: {e}')}")
raise
if not hv:
vae.enable_slicing()
vae.enable_tiling()
transformer.high_quality_fp32_output_for_inference = True
transformer.to(dtype=torch.bfloat16)
for m in (vae, image_encoder, text_encoder, text_encoder_2):
m.to(dtype=torch.float16)
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
m.requires_grad_(False)
if not hv:
DynamicSwapInstaller.install_model(transformer, device=gpu)
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
else:
for m in (vae, image_encoder, text_encoder, text_encoder_2, transformer):
m.to(gpu)
logger.debug("Models configured and moved to device")
print(f"{green('Models configured and moved to device')}")
# FastAPI Setup
app = FastAPI(title="GhostPack F1 Pro API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
async def verify_api_key(api_key: str = Security(api_key_header)):
if api_key != API_KEY:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key"
)
return api_key
class GenerateRequest(BaseModel):
prompt: str
negative_prompt: str
seed: int
video_length: float
latent_window: int
steps: int
cfg: float
distilled_cfg: float
cfg_rescale: float
gpu_keep: float
crf: int
use_teacache: bool
camera_action: str
disable_prompt_mods: bool
link_steps_window: bool
@app.get("/health")
async def health_check():
try:
return JSONResponse(content={"status": "healthy"})
except Exception as e:
logger.error(f"Health check failed: {e}", exc_info=True)
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500)
@app.get("/test")
async def test_server():
try:
report = {
"server_status": {
"version": VERSION,
"host": args.server,
"port": args.port,
"uptime": time.time() - time.time() if job_status else 0,
"active_jobs": len(active_jobs),
"api_status": "running",
},
"system": {
"vram_total": free_mem,
"vram_free": get_cuda_free_memory_gb(gpu),
"high_vram_mode": hv,
"cuda_available": torch.cuda.is_available(),
"cuda_device": torch.cuda.get_device_name(gpu) if torch.cuda.is_available() else "N/A",
},
"models": {
"text_encoder": text_encoder is not None,
"text_encoder_2": text_encoder_2 is not None,
"vae": vae is not None,
"image_encoder": image_encoder is not None,
"transformer": transformer is not None,
"tokenizer": tokenizer is not None,
"tokenizer_2": tokenizer_2 is not None,
"feature_extractor": feature_extractor is not None,
},
"paths": {
"base": BASE,
"images": VIDEO_IMG_DIR,
"videos": VIDEO_OUTPUT_DIR,
"temp": VIDEO_TMP_DIR,
"data": DATA_DIR,
"prompt_log": PROMPT_LOG_FILE,
"saved_prompts": SAVED_PROMPTS_FILE,
"install_log": INSTALL_LOG_FILE,
"video_info": VIDEO_INFO_FILE,
},
"file_system": {
"images_writable": os.access(VIDEO_IMG_DIR, os.W_OK),
"videos_writable": os.access(VIDEO_OUTPUT_DIR, os.W_OK),
"temp_writable": os.access(VIDEO_TMP_DIR, os.W_OK),
"data_writable": os.access(DATA_DIR, os.W_OK),
},
"dependencies": {
"xformers": status_xformers(),
"sage_attn": status_sage(),
"flash_attn": status_flash(),
"colorama": status_colorama(),
},
"health_check": {"status": "pass", "details": ""}
}
try:
dummy_img = np.zeros((64, 64, 3), dtype=np.uint8)
img_pt = (torch.from_numpy(dummy_img).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
if not hv:
load_model_as_complete(vae, gpu)
_ = vae_encode(img_pt, vae)
report["health_check"]["status"] = "pass"
except Exception as e:
report["health_check"]["status"] = "fail"
report["health_check"]["details"] = str(e)
logger.error(f"Health check failed: {e}", exc_info=True)
logger.info("Test endpoint accessed successfully")
print(f"{green(f'Test endpoint accessed: API running on {args.server}:{args.port}')}")
return JSONResponse(content=report)
except Exception as e:
logger.error(f"Test endpoint error: {e}", exc_info=True)
print(f"{red(f'Test endpoint error: {e}')}")
return JSONResponse(
content={"error": str(e), "status": "fail"},
status_code=500
)
@app.get("/status/{job_id}")
async def get_status(job_id: str, api_key: str = Depends(verify_api_key)):
try:
status = job_status.get(job_id, {"status": "not_found", "progress": 0.0, "render_time": 0})
return JSONResponse(
content={
"job_id": job_id,
"render_status": status["status"],
"render_progress": status["progress"],
"render_time": status["render_time"],
"active_jobs": len(active_jobs),
"api_status": "running",
}
)
except Exception as e:
logger.error(f"Status check failed for job {job_id}: {e}", exc_info=True)
return JSONResponse(
content={"error": str(e), "job_id": job_id, "status": "error"},
status_code=500
)
@app.post("/stop/{job_id}")
async def stop_render(job_id: str, api_key: str = Depends(verify_api_key)):
if job_id not in active_jobs:
logger.info(f"No active job {job_id} to stop")
print(f"{yellow(f'No active job {job_id} to stop')}")
return JSONResponse(content={"message": f"No active job {job_id}"})
stream = active_jobs[job_id]
stream.stop()
active_jobs.pop(job_id, None)
job_status[job_id]["status"] = "stopped"
job_status[jid]["progress"] = 0.0
logger.info(f"Stopped job {job_id}")
print(f"{yellow(f'Stopped job {job_id}')}")
return JSONResponse(content={"message": f"Job {job_id} stopped"})
@app.get("/videos")
async def get_videos(api_key: str = Depends(verify_api_key)):
try:
videos = [f for f in os.listdir(VIDEO_OUTPUT_DIR) if f.lower().endswith(".mp4")]
return JSONResponse(content={"status": "success", "videos": videos})
except Exception as e:
logger.error(f"Failed to list videos: {e}", exc_info=True)
return JSONResponse(content={"error": str(e), "status": "error"}, status_code=500)
@app.post("/generate")
async def generate_video(
image_file: UploadFile = File(...),
prompt: str = Form(""),
negative_prompt: str = Form(""),
seed: int = Form(31337),
video_length: float = Form(8.0),
latent_window: int = Form(3),
steps: int = Form(12),
cfg: float = Form(1.0),
distilled_cfg: float = Form(7.0),
cfg_rescale: float = Form(0.5),
gpu_keep: float = Form(6.0),
crf: int = Form(20),
use_teacache: bool = Form(True),
camera_action: str = Form("Static Camera"),
disable_prompt_mods: bool = Form(False),
link_steps_window: bool = Form(True),
api_key: str = Depends(verify_api_key)
):
params = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": seed,
"video_length": video_length,
"latent_window": latent_window,
"steps": steps,
"cfg": cfg,
"distilled_cfg": distilled_cfg,
"cfg_rescale": cfg_rescale,
"gpu_keep": gpu_keep,
"crf": crf,
"use_teacache": use_teacache,
"camera_action": camera_action,
"disable_prompt_mods": disable_prompt_mods,
"link_steps_window": link_steps_window
}
logger.info(f"Received /generate request with parameters: {json.dumps(params, indent=2)}")
print(f"{green(f'API: Received /generate request with parameters: {json.dumps(params, indent=2)}')}")
if not render_on_off:
logger.info("Render disabled by client")
print(f"{red('API: Render disabled by client')}")
return JSONResponse(content={"status": "render_disabled", "error": "Rendering disabled"}, status_code=403)
jid = str(uuid.uuid4())
logger.info(f"Starting job {jid} with prompt: {prompt}")
print(f"{green(f'API: Starting job ID: {jid}')}")
stream = AsyncStream()
active_jobs[jid] = stream
job_status[jid] = {"status": "rendering", "progress": 0.0, "render_time": 0}
try:
logger.debug("Processing uploaded image file")
print(f"{yellow('API: Processing uploaded image file')}")
img_data = await image_file.read()
if not img_data:
logger.error("Empty image file")
print(f"{red('API: Empty image file')}")
raise HTTPException(status_code=400, detail="Empty image file")
try:
img = Image.open(io.BytesIO(img_data)).convert('RGB')
img_np = np.array(img)
if img_np.shape[0] < 64 or img_np.shape[1] < 64:
logger.error("Image dimensions too small")
print(f"{red('API: Image dimensions too small (minimum 64x64)')}")
raise HTTPException(status_code=400, detail="Image dimensions must be at least 64x64")
except Exception as e:
logger.error(f"Invalid image: {str(e)}")
print(f"{red(f'API: Invalid image: {str(e)}')}")
raise HTTPException(status_code=400, detail=f"Invalid image: {str(e)}")
if get_cuda_free_memory_gb(gpu) < 2:
logger.error("Insufficient VRAM for processing")
print(f"{red('API: Insufficient VRAM (<2GB). Lower gpu_keep or latent_window.')}")
raise HTTPException(status_code=500, detail="Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.")
logger.info(f"Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}")
print(f"{yellow(f'API: Passing to worker: seed={seed}, video_length={video_length}, latent_window={latent_window}, steps={steps}, cfg={cfg}, distilled_cfg={distilled_cfg}')}")
final_video_path = worker(
img_np=img_np,
prompt=prompt,
negative_prompt=negative_prompt,
seed=seed,
secs=video_length,
win=latent_window,
stp=steps,
cfg=cfg,
gsc=distilled_cfg,
rsc=cfg_rescale,
keep=gpu_keep,
tea=use_teacache,
crf=crf,
camera_action=camera_action,
disable_prompt_mods=disable_prompt_mods,
link_steps_window=link_steps_window,
stream=stream,
jid=jid
)
if final_video_path is None:
logger.error("Render stopped or failed")
print(f"{red('API: Render stopped or failed')}")
raise HTTPException(status_code=500, detail="Render stopped or failed")
final_filename = os.path.basename(final_video_path)
with open(final_video_path, "rb") as f:
video_data = base64.b64encode(f.read()).decode("utf-8")
save_video_info(
prompt=prompt,
n_p=negative_prompt,
filename=final_filename,
seed=seed,
secs=video_length,
additional_info={"camera_action": camera_action, "job_id": jid},
completed=True
)
response_info = {
"status": "success",
"job_id": jid,
"video_data": video_data,
"metadata": {
"prompt": prompt,
"negative_prompt": negative_prompt,
"seed": seed,
"duration_secs": video_length,
"timestamp": time.strftime("%Y%m%d_%H%M%S"),
"render_time_secs": job_status[jid]["render_time"],
"camera_action": camera_action,
"latent_window": latent_window,
"steps": steps,
"cfg": cfg,
"distilled_cfg": distilled_cfg,
"cfg_rescale": cfg_rescale,
"gpu_keep": gpu_keep,
"crf": crf,
"use_teacache": use_teacache,
"disable_prompt_mods": disable_prompt_mods,
"link_steps_window": link_steps_window
}
}
logger.info(f"Video generated: {final_video_path}")
print(f"{green(f'API: Video generated: {final_video_path}')}")
return JSONResponse(content=response_info)
except Exception as e:
logger.error(f"Generate failed: {e}", exc_info=True)
print(f"{red(f'API: Error during /generate: {str(e)}')}")
job_status[jid]["status"] = "error"
job_status[jid]["progress"] = 0.0
stream.output_queue.push(("end", str(e)))
return JSONResponse(
content={"error": str(e), "job_id": jid, "status": "error"},
status_code=500
)
finally:
active_jobs.pop(jid, None)
clear_queue(stream.input_queue)
clear_queue(stream.output_queue)
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]:
job_status[jid]["status"] = "complete"
torch.cuda.empty_cache()
@torch.no_grad()
def worker(img_np, prompt, negative_prompt, seed, secs, win, stp, cfg, gsc, rsc, keep, tea, crf, camera_action, disable_prompt_mods, link_steps_window, stream, jid):
start_time = time.time()
job_status[jid] = {"status": "rendering", "progress": 0.0, "render_time": 0}
max_sections = 100
logger.info(f"Worker started for job {jid} with secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}")
print(f"{green(f'API: Starting video generation, job ID: {jid}, secs={secs}, win={win}, cfg={cfg}, distilled_cfg={gsc}')}")
try:
if img_np.shape[0] < 64 or img_np.shape[1] < 64:
raise ValueError("Image dimensions too small (minimum 64x64)")
if secs > 10:
logger.warning("Video length > 10s capped at 10s")
print(f"{yellow('API: Video length > 10s capped at 10s')}")
secs = min(secs, 10)
if win > 10:
logger.warning("Latent window > 10 capped at 10")
print(f"{yellow('API: Latent window > 10 capped at 10')}")
win = min(win, 10)
if get_cuda_free_memory_gb(gpu) < 2:
raise ValueError("Low VRAM (<2GB). Lower 'gpu_keep' or 'latent_window'.")
try:
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0:
if stream.input_queue.get_nowait() == "end":
stream.output_queue.push(("end", "Job stopped by client"))
job_status[jid]["status"] = "stopped"
return None
except queue.Empty:
pass
if not disable_prompt_mods:
if "stop" not in prompt.lower() and secs > 3:
prompt += " The subject stops moving after 3 seconds."
if "smooth" not in prompt.lower():
prompt = f"Smooth animation: {prompt}"
if "silent" not in prompt.lower():
prompt += ", silent"
prompt = update_prompt(prompt, camera_action)
if len(prompt.split()) > 50:
logger.warning("Complex prompt may slow rendering")
print(f"{yellow('API: Warning: Complex prompt may slow rendering')}")
try:
with open(PROMPT_LOG_FILE, "a") as f:
f.write(f"{jid}\t{prompt}\t{negative_prompt}\n")
os.chmod(PROMPT_LOG_FILE, 0o664)
except Exception as e:
logger.error(f"Failed to write to {PROMPT_LOG_FILE}: {e}")
print(f"{red(f'API: Failed to write prompt log: {e}')}")
raise
stream.output_queue.push(('progress', (None, "", make_progress_bar_html(0, "Start"))))
if not hv:
unload_complete_models(text_encoder, text_encoder_2, image_encoder, vae, transformer)
fake_diffusers_current_device(text_encoder, gpu)
load_model_as_complete(text_encoder_2, gpu)
lv, cp = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
if cfg == 1:
lv_n = torch.zeros_like(lv)
cp_n = torch.zeros_like(cp)
else:
lv_n, cp_n = encode_prompt_conds(negative_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
lv, m = crop_or_pad_yield_mask(lv, 512)
lv_n, m_n = crop_or_pad_yield_mask(lv_n, 512)
lv, cp, lv_n, cp_n = [x.to(torch.bfloat16) for x in (lv, cp, lv_n, cp_n)]
logger.debug(f"Prompt embeddings: lv={lv.shape}, cp={cp.shape}, lv_n={lv_n.shape}, cp_n={cp_n.shape}")
torch.cuda.empty_cache()
H, W, _ = img_np.shape
h, w = H, W
img_filename = f"{jid}.png"
try:
Image.fromarray(img_np).save(os.path.join(VIDEO_IMG_DIR, img_filename))
os.chmod(os.path.join(VIDEO_IMG_DIR, img_filename), 0o664)
except Exception as e:
logger.error(f"Failed to save image {img_filename}: {e}")
print(f"{red(f'API: Failed to save image: {e}')}")
raise
img_pt = (torch.from_numpy(img_np).float() / 127.5 - 1).permute(2, 0, 1)[None, :, None]
logger.debug(f"Image tensor shape: {img_pt.shape}")
if not hv:
load_model_as_complete(vae, gpu)
start_lat = vae_encode(img_pt, vae)
logger.debug(f"VAE encoded latent shape: {start_lat.shape}")
if not hv:
load_model_as_complete(image_encoder, gpu)
img_emb = hf_clip_vision_encode(img_np, feature_extractor, image_encoder).last_hidden_state.to(torch.bfloat16)
logger.debug(f"Image embedding shape: {img_emb.shape}")
torch.cuda.empty_cache()
gen = torch.Generator("cpu").manual_seed(seed)
sections = max(round((secs * 30) / (win * 4)), 1)
if sections > max_sections:
logger.error(f"Too many sections ({sections}) for job {jid}")
print(f"{red(f'API: Too many sections ({sections}) for job {jid}')}")
raise ValueError(f"Too many sections ({sections})")
logger.info(f"Job {jid} sections: {sections}, pad_seq: {[3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))}")
hist_lat = torch.zeros((1, 16, 1 + 2 + 16, h // 8, w // 8), dtype=torch.float16).cpu()
hist_px = None
total = 0
pad_seq = [3] + [2] * (sections - 3) + [1, 0] if sections > 4 else list(reversed(range(sections)))
section_count = 0
for pad in pad_seq:
section_count += 1
if section_count > max_sections:
logger.error(f"Max sections ({max_sections}) exceeded for job {jid}")
print(f"{red(f'API: Max sections ({max_sections}) exceeded for job {jid}')}")
raise ValueError(f"Max sections ({max_sections}) exceeded")
last = pad == 0
logger.info(f"Job {jid} processing pad: {pad}, last: {last}")
def cb(d):
if job_status[jid]["status"] == "complete":
return
pv = vae_decode_fake(d["denoised"])
pv = (pv * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
pv = einops.rearrange(pv, "b c t h w -> (b h) (t w) c")
cur = d["i"] + 1
job_status[jid]["progress"] = (cur / stp) * 100
progress_message = f"API: Job {jid} Progress {cur}/{stp} ({job_status[jid]['progress']:.1f}%)"
logger.info(progress_message)
print(yellow(progress_message))
stream.output_queue.push(('progress', (pv, f"{cur}/{stp}", make_progress_bar_html(int(100 * cur / stp), f"{cur}/{stp}"))))
try:
if hasattr(stream.input_queue, "qsize") and stream.input_queue.qsize() > 0:
if stream.input_queue.get_nowait() == "end":
stream.output_queue.push(("end", "Job stopped by client"))
raise KeyboardInterrupt
except queue.Empty:
pass
idx = torch.arange(0, sum([1, pad * win, win, 1, 2, 16]))[None].to(device=gpu)
a, b, c, d, e, f = idx.split([1, pad * win, win, 1, 2, 16], 1)
clean_idx = torch.cat([a, d], 1)
pre = start_lat.to(hist_lat)
post, two, four = hist_lat[:, :, :1 + 2 + 16].split([1, 2, 16], 2)
clean = torch.cat([pre, post], 2)
if not hv:
unload_complete_models()
move_model_to_device_with_memory_preservation(transformer, gpu, keep)
transformer.initialize_teacache(tea, stp)
new_lat = sample_hunyuan(
transformer=transformer, sampler="unipc", width=w, height=h, frames=win * 4 - 3,
real_guidance_scale=cfg, distilled_guidance_scale=gsc, guidance_rescale=rsc,
num_inference_steps=stp, generator=gen,
prompt_embeds=lv, prompt_embeds_mask=m, prompt_poolers=cp,
negative_prompt_embeds=lv_n, negative_prompt_embeds_mask=m_n, negative_prompt_poolers=cp_n,
device=gpu, dtype=torch.bfloat16, image_embeddings=img_emb,
latent_indices=c, clean_latents=clean, clean_latent_indices=clean_idx,
clean_latents_2x=two, clean_latent_2x_indices=e,
clean_latents_4x=four, clean_latent_4x_indices=f, callback=cb
)
if last:
new_lat = torch.cat([start_lat.to(new_lat), new_lat], 2)
total += new_lat.shape[2]
hist_lat = torch.cat([new_lat.to(hist_lat), hist_lat], 2)
if not hv:
offload_model_from_device_for_memory_preservation(transformer, gpu, 8)
load_model_as_complete(vae, gpu)
real = hist_lat[:, :, :total]
if hist_px is None:
hist_px = vae_decode(real, vae).cpu()
else:
overlap = win * 4 - 3
curr = vae_decode(real[:, :, :win * 2], vae).cpu()
hist_px = soft_append_bcthw(curr, hist_px, overlap)
if not hv:
unload_complete_models()
tmp_path = os.path.join(VIDEO_TMP_DIR, f"{jid}_{total}.mp4")
save_bcthw_as_mp4(hist_px, tmp_path, fps=30, crf=crf)
os.chmod(tmp_path, 0o664)
stream.output_queue.push(('file', tmp_path))
if last:
fin_path = os.path.join(VIDEO_OUTPUT_DIR, f"{jid}_{total}.mp4")
try:
os.replace(tmp_path, fin_path)
os.chmod(fin_path, 0o664)
job_status[jid]["status"] = "complete"
job_status[jid]["render_time"] = time.time() - start_time
stream.output_queue.push(('complete', fin_path))
clear_queue(stream.input_queue)
clear_queue(stream.output_queue)
logger.info(f"Final video saved: {fin_path}, render time: {job_status[jid]['render_time']:.2f}s")
print(f"{green(f'API: Final video saved: {fin_path}')}")
return fin_path
except Exception as e:
logger.error(f"Failed to save final video: {e}")
print(f"{red(f'API: Failed to save final video: {e}')}")
raise
torch.cuda.empty_cache()
except Exception as e:
logger.error(f"Worker failed: {e}", exc_info=True)
print(f"{red(f'API: Worker error: {e}')}")
traceback.print_exc()
job_status[jid]["status"] = "error"
stream.output_queue.push(("end", str(e)))
return None
finally:
if jid in active_jobs:
active_jobs.pop(jid, None)
clear_queue(stream.input_queue)
clear_queue(stream.output_queue)
if job_status.get(jid, {}).get("status") not in ["complete", "error", "stopped"]:
job_status[jid]["status"] = "complete"
torch.cuda.empty_cache()
@torch.no_grad()
def process(img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window):
if img is None:
raise gr.Error("Upload an image")
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
stream = AsyncStream()
jid = str(uuid.uuid4())
async_run(worker, img, prm, npr, sd, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window, stream, jid)
out, log = None, ""
try:
while True:
flag, data = stream.output_queue.next()
if job_status.get(jid, {}).get("status") == "complete":
break
if flag == "file":
out = data
yield out, gr.update(), gr.update(), log, gr.update(interactive=False), gr.update(interactive=True)
if flag == "progress":
pv, desc, html = data
log = desc
yield gr.update(), gr.update(visible=True, value=pv), desc, html, gr.update(interactive=False), gr.update(interactive=True)
if flag == "complete":
yield data, gr.update(visible=False), "Generation complete", "", gr.update(interactive=True), gr.update(interactive=False)
break
if flag == "end":
yield out, gr.update(visible=False), f"Error: {data}", "", gr.update(interactive=True), gr.update(interactive=False)
break
except Exception as e:
logger.error(f"Process loop failed: {e}")
yield out, gr.update(visible=False), f"Error: {str(e)}", "", gr.update(interactive=True), gr.update(interactive=False)
job_status[jid]["status"] = "error"
finally:
clear_queue(stream.input_queue)
clear_queue(stream.output_queue)
torch.cuda.empty_cache()
def end_process():
global stream
if stream:
stream.input_queue.push("end")
logger.info("Gradio: Render stop requested")
print(f"{red('Gradio: Render stop requested')}")
# Gradio UI (same as original)
quick_prompts = [
["Smooth animation: A character waves for 3 seconds, then stands still for 2 seconds, static camera, silent."],
["Smooth animation: A character moves for 5 seconds, static camera, silent."]
]
css = make_progress_bar_css() + """
.orange-button{background:#ff6200;color:#fff;border-color:#ff6200;}
.load-button{background:#4CAF50;color:#fff;border-color:#4CAF50;margin-left:10px;}
.big-setting-button{background:#0066cc;color:#fff;border:none;padding:14px 24px;font-size:18px;width:100%;border-radius:6px;margin:8px 0;}
.styled-dropdown{width:250px;padding:5px;border-radius:4px;}
.viewer-column{width:100%;max-width:900px;margin:0 auto;}
.media-preview img,.media-preview video{max-width:100%;height:380px;object-fit:contain;border:1px solid #444;border-radius:6px;}
.media-container{display:flex;gap:20px;align-items:flex-start;}
.control-box{min-width:220px;}
.control-grid{display:grid;grid-template-columns:1fr 1fr;gap:10px;}
.image-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.image-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.image-gallery img{object-fit:contain;height:360px!important;width:300px!important;}
.video-gallery{display:grid!important;grid-template-columns:repeat(auto-fit,minmax(300px,1fr))!important;gap:10px;padding:10px!important;overflow-y:auto!important;max-height:360px!important;}
.video-gallery .gallery-item{padding:10px;height:360px!important;width:300px!important;}
.video-gallery video{object-fit:contain;height:360px!important;width:300px!important;}
.stop-button {background-color: #ff4d4d !important; color: white !important;}
"""
blk = gr.Blocks(css=css, title="GhostPack F1 Pro").queue()
with blk:
gr.Markdown("# π» GhostPack F1 Pro")
with gr.Tabs():
with gr.TabItem("π» Generate"):
with gr.Row():
with gr.Column():
img_in = gr.Image(sources="upload", type="numpy", label="Image", height=320)
generate_button = gr.Button("Generate Video", elem_id="generate_button")
stop_button = gr.Button("Stop Generation", elem_id="stop_button", elem_classes="stop-button")
prm = gr.Textbox(
label="Prompt",
value="Smooth animation: A female stands with subtle, sensual micro-movements, breathing gently, slight head tilt, static camera, silent",
elem_id="prompt_input",
)
npr = gr.Textbox(
label="Negative Prompt",
value="low quality, blurry, speaking, talking, moaning, vocalizing, lip movement, mouth animation, sound, dialogue, speech, whispering, shouting, lip sync, facial animation, expressive face, verbal expression, animated mouth",
elem_id="negative_prompt_input",
)
save_msg = gr.Markdown("")
disable_prompt_mods = gr.Checkbox(label="Disable Prompt Modifications", value=False)
link_steps_window = gr.Checkbox(label="Link Steps and Latent Window", value=True)
btn_save = gr.Button("Save Prompt")
btn1, btn2, btn3 = (
gr.Button("Load Most Recent"),
gr.Button("Load 2nd Recent"),
gr.Button("Load 3rd Recent"),
)
ds = gr.Dataset(samples=quick_prompts, label="Quick List", components=[prm])
ds.click(lambda x: x[0], [ds], [prm])
btn_save.click(save_prompt_fn, [prm, npr], [save_msg])
btn1.click(lambda: load_prompt_fn(0), [], [prm])
btn2.click(lambda: load_prompt_fn(1), [], [prm])
btn3.click(lambda: load_prompt_fn(2), [], [prm])
camera_action_input = gr.Dropdown(
choices=[
"Static Camera", "Slight Orbit Left", "Slight Orbit Right",
"Slight Orbit Up", "Slight Orbit Down", "Top-Down View",
"Slight Zoom In", "Slight Zoom Out",
],
label="Camera Action",
value="Static Camera",
elem_id="camera_action_input",
info="Select a camera movement to append to the prompt.",
)
camera_action_input.change(
fn=lambda prompt, camera_action: update_prompt(prompt, camera_action),
inputs=[prm, camera_action_input],
outputs=prm,
)
with gr.Column():
pv = gr.Image(label="Next Latents", height=200, visible=False)
vid = gr.Video(label="Finished", autoplay=True, height=500, loop=True, show_share_button=False)
log_md = gr.Markdown("")
bar = gr.HTML("")
with gr.Column():
se = gr.Number(label="Seed", value=31337, precision=0, elem_id="seed_input")
sec = gr.Slider(label="Video Length (s)", minimum=1, maximum=10, value=8.0, step=0.1, elem_id="video_length_input")
win = gr.Slider(label="Latent Window", minimum=1, maximum=10, value=3, step=1, elem_id="latent_window_input")
stp = gr.Slider(label="Steps", minimum=1, maximum=100, value=12, step=1, elem_id="steps_input")
cfg = gr.Slider(label="CFG", minimum=1, maximum=32, value=1.7, step=0.01, elem_id="cfg_input")
gsc = gr.Slider(label="Distilled CFG", minimum=1, maximum=32, value=4.0, step=0.01, elem_id="distilled_cfg_input")
rsc = gr.Slider(label="CFG Re-Scale", minimum=0, maximum=1, value=0.5, step=0.01, elem_id="cfg_rescale_input")
kee = gr.Slider(label="GPU Keep (GB)", minimum=6, maximum=free_mem, value=6.5, step=0.1, elem_id="gpu_keep_input")
crf = gr.Slider(label="MP4 CRF", minimum=0, maximum=100, value=20, step=1, elem_id="mp4_crf_input")
tea = gr.Checkbox(label="Use TeaCache", value=True, elem_id="use_teacache_input")
generate_button.click(
fn=process,
inputs=[img_in, prm, npr, se, sec, win, stp, cfg, gsc, rsc, kee, tea, crf, disable_prompt_mods, link_steps_window],
outputs=[vid, pv, log_md, bar, generate_button, stop_button],
)
stop_button.click(fn=end_process)
gr.Button("Update Progress").click(fn=lambda: get_progress(), outputs=[log_md, bar])
with gr.TabItem("πΌοΈ Image Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
image_preview = gr.Image(
label="Viewer", value=(list_images()[0] if list_images() else None),
interactive=False, elem_classes="media-preview",
)
with gr.Column(elem_classes="control-box"):
image_dropdown = gr.Dropdown(
choices=[os.path.basename(i) for i in list_images()],
value=(os.path.basename(list_images()[0]) if list_images() else None),
label="Select", elem_classes="styled-dropdown",
)
with gr.Row(elem_classes="control-grid"):
load_btn = gr.Button("Load", elem_classes="load-button")
next_btn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_btn = gr.Button("Refresh")
delete_btn = gr.Button("Delete", elem_classes="orange-button")
image_gallery = gr.Gallery(
value=list_images(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="image-gallery",
)
load_btn.click(load_image, [image_dropdown], [image_preview, image_dropdown])
next_btn.click(next_image_and_load, [image_dropdown], [image_preview, image_dropdown])
refresh_btn.click(
lambda: (
gr.update(choices=[os.path.basename(i) for i in list_images()], value=os.path.basename(list_images()[0]) if list_images() else None),
gr.update(value=list_images()[0] if list_images() else None),
gr.update(value=list_images()),
),
[], [image_dropdown, image_preview, image_gallery],
)
delete_btn.click(
lambda sel: (
os.remove(os.path.join(VIDEO_IMG_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_IMG_DIR, sel)) else None
) or load_image(""),
[image_dropdown], [image_preview, image_dropdown],
)
image_gallery.select(gallery_image_select, [], [image_preview, image_dropdown])
with gr.TabItem("π¬ Video Gallery"):
with gr.Row(elem_classes="media-container"):
with gr.Column(scale=3):
video_preview = gr.Video(
label="Viewer", value=(list_videos()[0] if list_videos() else None),
autoplay=True, loop=True, interactive=False, elem_classes="media-preview",
)
with gr.Column(elem_classes="control-box"):
video_dropdown = gr.Dropdown(
choices=[os.path.basename(v) for v in list_videos()],
value=(os.path.basename(list_videos()[0]) if list_videos() else None),
label="Select", elem_classes="styled-dropdown",
)
with gr.Row(elem_classes="control-grid"):
load_vbtn = gr.Button("Load", elem_classes="load-button")
next_vbtn = gr.Button("Next", elem_classes="load-button")
with gr.Row(elem_classes="control-grid"):
refresh_v = gr.Button("Refresh")
delete_v = gr.Button("Delete", elem_classes="orange-button")
video_gallery = gr.Gallery(
value=list_videos(), label="Thumbnails", columns=6, height=360,
allow_preview=False, type="filepath", elem_classes="video-gallery",
)
load_vbtn.click(load_video, [video_dropdown], [video_preview, video_dropdown])
next_vbtn.click(next_video_and_load, [video_dropdown], [video_preview, video_dropdown])
refresh_v.click(
lambda: (
gr.update(choices=[os.path.basename(v) for v in list_videos()], value=os.path.basename(list_videos()[0]) if list_videos() else None),
gr.update(value=list_videos()[0] if list_videos() else None),
gr.update(value=list_videos()),
),
[], [video_dropdown, video_preview, video_gallery],
)
delete_v.click(
lambda sel: (
os.remove(os.path.join(VIDEO_OUTPUT_DIR, sel)) if sel and os.path.exists(os.path.join(VIDEO_OUTPUT_DIR, sel)) else None
) or load_video(""),
[video_dropdown], [video_preview, video_dropdown],
)
video_gallery.select(gallery_video_select, [], [video_preview, video_dropdown])
with gr.TabItem("π» About"):
gr.Markdown("## GhostPack F1 Pro")
with gr.Row():
with gr.Column():
gr.Markdown("**π οΈ Description**\nImage-to-Video toolkit powered by HunyuanVideo & FramePack-F1")
with gr.Column():
gr.Markdown(f"**π¦ Version**\n{VERSION}")
with gr.Column():
gr.Markdown("**βοΈ Author**\nGhostAI")
with gr.Column():
gr.Markdown("**π Repo**\nhttps://huggingface.co/spaces/ghostai1/GhostPack")
with gr.TabItem("βοΈ Settings"):
ct = gr.Button("Clear Temp", elem_classes="big-setting-button")
ctmsg = gr.Markdown("")
co = gr.Button("Clear Old", elem_classes="big-setting-button")
comsg = gr.Markdown("")
ci = gr.Button("Clear Images", elem_classes="big-setting-button")
cimg = gr.Markdown("")
cv = gr.Button("Clear Videos", elem_classes="big-setting-button")
cvid = gr.Markdown("")
ct.click(clear_temp_videos, [], ctmsg)
co.click(clear_old_files, [], comsg)
ci.click(clear_images, [], cimg)
cv.click(clear_videos, [], cvid)
with gr.TabItem("π οΈ Install"):
xs = gr.Textbox(value=status_xformers(), interactive=False, label="xformers")
bx = gr.Button("Install xformers", elem_classes="big-setting-button")
ss = gr.Textbox(value=status_sage(), interactive=False, label="sage-attn")
bs = gr.Button("Install sage-attn", elem_classes="big-setting-button")
fs = gr.Textbox(value=status_flash(), interactive=False, label="flash-attn")
bf = gr.Button("Install flash-attn", elem_classes="big-setting-button")
cs = gr.Textbox(value=status_colorama(), interactive=False, label="colorama")
bc = gr.Button("Install colorama", elem_classes="big-setting-button")
bx.click(install_xformers, [], xs)
bs.click(install_sage_attn, [], ss)
bf.click(install_flash_attn, [], fs)
bc.click(install_colorama, [], cs)
with gr.TabItem("π Logs"):
logs = gr.Textbox(lines=20, interactive=False, label="Install Logs")
rl = gr.Button("Refresh", elem_classes="big-setting-button")
cl = gr.Button("Clear", elem_classes="big-setting-button")
rl.click(refresh_logs, [], logs)
cl.click(clear_logs, [], logs)
gr.HTML(
"""
<script>
document.querySelectorAll('.video-gallery video').forEach(v => {
v.addEventListener('loadedmetadata', () => {
if (v.duration > 2) v.currentTime = 2;
});
});
</script>
"""
)
def update_prompt(prompt, camera_action):
camera_actions = [
"static camera", "slight camera orbit left", "slight camera orbit right",
"slight camera orbit up", "slight camera orbit down", "top-down view",
"slight camera zoom in", "slight camera zoom out",
]
for action in camera_actions:
prompt = re.sub(rf",\s*{re.escape(action)}\b", "", prompt, flags=re.IGNORECASE).strip()
if camera_action and camera_action != "None":
camera_phrase = f", {camera_action.lower()}"
if len(prompt.split()) + len(camera_phrase.split()) <= 50:
return prompt + camera_phrase
else:
logger.warning(f"Prompt exceeds 50 words after adding camera action: {prompt}")
print(f"{yellow(f'API: Warning: Prompt exceeds 50 words with camera action')}")
return prompt
def get_progress():
return f"Status: {job_status.get('latest', {'status': 'idle'})['status']}\nProgress: {job_status.get('latest', {'progress': 0.0})['progress']:.1f}%\nLast Render Time: {job_status.get('latest', {'render_time': 0})['render_time']:.1f}s"
# Check for port conflicts
if is_port_in_use(args.port):
logger.error(f"Port {args.port} is already in use")
print(f"{red(f'Error: Port {args.port} is already in use. Please stop other instances or change ports.')}")
sys.exit(1)
# Run FastAPI and optional Gradio
def run_api():
try:
logger.info(f"Starting FastAPI on {args.server}:{args.port}")
print(f"{green(f'Starting FastAPI on {args.server}:{args.port}')}")
uvicorn.run(app, host=args.server, port=args.port)
except Exception as e:
logger.error(f"Failed to start FastAPI: {e}", exc_info=True)
print(f"{red(f'Error: Failed to start FastAPI: {e}')}")
sys.exit(1)
if __name__ == "__main__":
try:
logger.info(f"Starting GhostPack F1 Pro Server version {VERSION}")
print(f"Starting GhostPack F1 Pro Server version {VERSION}")
api_thread = Thread(target=run_api)
api_thread.daemon = True
api_thread.start()
time.sleep(5)
try:
response = requests.get(f"http://{args.server}:{args.port}/health", timeout=10)
if response.status_code != 200:
raise RuntimeError("FastAPI health check failed")
logger.info("FastAPI health check passed")
print(f"{green('FastAPI health check passed')}")
except Exception as e:
logger.error(f"FastAPI not ready: {e}")
print(f"{red(f'Error: FastAPI not ready: {e}')}")
sys.exit(1)
if args.gradio:
logger.info(f"Starting Gradio UI on {args.server}:7860")
print(f"{green(f'Starting Gradio UI on {args.server}:7860')}")
server = blk.launch(
server_name=args.server,
server_port=7860,
share=args.share,
inbrowser=args.inbrowser,
prevent_thread_lock=True,
allowed_paths=["/"]
)
if args.share and server.share_url:
logger.info(f"Public Gradio URL: {server.share_url}")
print(f"{yellow(f'Public Gradio URL: {server.share_url}')}")
logger.info(f"Gradio UI running on http://{args.server}:7860")
print(f"{green(f'Gradio UI running on http://{args.server}:7860')}")
while True:
time.sleep(1)
except KeyboardInterrupt:
logger.info("Shutting down gracefully")
print(f"{green('Shutting down gracefully')}")
sys.exit(0) |