Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,15 @@
|
|
2 |
# FILE: app.py
|
3 |
# Description: Image-to-Video generation server with Gradio UI and FastAPI for Hugging Face Spaces
|
4 |
# Version: 1.2.8
|
5 |
-
# Timestamp: 2025-07-02 03:
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Requires custom diffusers_helper package in /diffusers_helper
|
8 |
|
9 |
import os
|
@@ -107,7 +114,7 @@ args = parser.parse_args()
|
|
107 |
render_on_off = True
|
108 |
|
109 |
BASE = os.path.abspath(os.path.dirname(__file__))
|
110 |
-
|
111 |
|
112 |
# Check if ports are available
|
113 |
def is_port_in_use(port):
|
@@ -134,7 +141,7 @@ INSTALL_LOG_FILE = "/data/install_logs.txt"
|
|
134 |
LAST_CLEANUP_FILE = "/data/last_cleanup.txt"
|
135 |
|
136 |
# Initialize directories
|
137 |
-
for d in (DATA_DIR, TMP_DIR, VIDEO_OUTPUT_DIR, VIDEO_IMG_DIR, VIDEO_TMP_DIR):
|
138 |
if not os.path.exists(d):
|
139 |
try:
|
140 |
os.makedirs(d, exist_ok=True)
|
@@ -413,36 +420,36 @@ logger.info(f"VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}")
|
|
413 |
print(f"{yellow(f'VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}')}")
|
414 |
|
415 |
try:
|
416 |
-
print(f"{yellow('Loading models...')}")
|
417 |
text_encoder = LlamaModel.from_pretrained(
|
418 |
-
"hunyuanvideo-community/HunyuanVideo
|
419 |
).cpu().eval()
|
420 |
text_encoder_2 = CLIPTextModel.from_pretrained(
|
421 |
-
"hunyuanvideo-community/HunyuanVideo
|
422 |
).cpu().eval()
|
423 |
tokenizer = LlamaTokenizerFast.from_pretrained(
|
424 |
-
"hunyuanvideo-community/HunyuanVideo
|
425 |
)
|
426 |
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
427 |
-
"hunyuanvideo-community/HunyuanVideo
|
428 |
)
|
429 |
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
430 |
-
"hunyuanvideo-community/HunyuanVideo
|
431 |
).cpu().eval()
|
432 |
feature_extractor = SiglipImageProcessor.from_pretrained(
|
433 |
-
"lllyasviel/flux_redux_bfl
|
434 |
)
|
435 |
image_encoder = SiglipVisionModel.from_pretrained(
|
436 |
-
"lllyasviel/flux_redux_bfl
|
437 |
).cpu().eval()
|
438 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
439 |
-
"lllyasviel/FramePack_F1_I2V_HY_20250503", torch_dtype=torch.bfloat16
|
440 |
).cpu().eval()
|
441 |
-
logger.info("Models loaded successfully")
|
442 |
-
print(f"{green('Models loaded successfully')}")
|
443 |
except Exception as e:
|
444 |
logger.error(f"Failed to load models: {e}", exc_info=True)
|
445 |
-
print(f"{red(f'Error: Failed to load models: {e}')}")
|
446 |
raise
|
447 |
|
448 |
if not hv:
|
@@ -539,6 +546,7 @@ async def test_server():
|
|
539 |
},
|
540 |
"paths": {
|
541 |
"base": BASE,
|
|
|
542 |
"images": VIDEO_IMG_DIR,
|
543 |
"videos": VIDEO_OUTPUT_DIR,
|
544 |
"temp": VIDEO_TMP_DIR,
|
@@ -553,6 +561,7 @@ async def test_server():
|
|
553 |
"videos_writable": os.access(VIDEO_OUTPUT_DIR, os.W_OK),
|
554 |
"temp_writable": os.access(VIDEO_TMP_DIR, os.W_OK),
|
555 |
"data_writable": os.access(DATA_DIR, os.W_OK),
|
|
|
556 |
},
|
557 |
"dependencies": {
|
558 |
"xformers": status_xformers(),
|
@@ -613,7 +622,7 @@ async def stop_render(job_id: str, api_key: str = Depends(verify_api_key)):
|
|
613 |
logger.info(f"No active job {job_id} to stop")
|
614 |
print(f"{yellow(f'No active job {job_id} to stop')}")
|
615 |
return JSONResponse(content={"message": f"No active job {job_id}"})
|
616 |
-
stream = active_jobs[
|
617 |
stream.stop()
|
618 |
active_jobs.pop(job_id, None)
|
619 |
job_status[job_id]["status"] = "stopped"
|
@@ -1365,10 +1374,4 @@ if __name__ == "__main__":
|
|
1365 |
logger.info(f"Public Gradio URL: {server.share_url}")
|
1366 |
print(f"{yellow(f'Public Gradio URL: {server.share_url}')}")
|
1367 |
logger.info(f"Gradio UI running on http://{args.server}:7860")
|
1368 |
-
print
|
1369 |
-
while True:
|
1370 |
-
time.sleep(1)
|
1371 |
-
except KeyboardInterrupt:
|
1372 |
-
logger.info("Shutting down gracefully")
|
1373 |
-
print(f"{green('Shutting down gracefully')}")
|
1374 |
-
sys.exit(0)
|
|
|
2 |
# FILE: app.py
|
3 |
# Description: Image-to-Video generation server with Gradio UI and FastAPI for Hugging Face Spaces
|
4 |
# Version: 1.2.8
|
5 |
+
# Timestamp: 2025-07-02 03:20 CDT
|
6 |
+
# Author: Grok 3, built by xAI (based on GhostAI's ghostpack_gradio_f1.py)
|
7 |
+
# NOTE: Optimized for Hugging Face Spaces with H200 GPU, 25 min/day render time
|
8 |
+
# Loads models from /data/models (pre-downloaded)
|
9 |
+
# Uses /data for persistent storage, /tmp for temporary files
|
10 |
+
# API key authentication for /generate endpoint (off-site use)
|
11 |
+
# Base64-encoded video responses
|
12 |
+
# Gradio UI matches original ghostpack_gradio_f1.py
|
13 |
+
# Idle until triggered by API or Gradio
|
14 |
# Requires custom diffusers_helper package in /diffusers_helper
|
15 |
|
16 |
import os
|
|
|
114 |
render_on_off = True
|
115 |
|
116 |
BASE = os.path.abspath(os.path.dirname(__file__))
|
117 |
+
MODEL_DIR = "/data/models"
|
118 |
|
119 |
# Check if ports are available
|
120 |
def is_port_in_use(port):
|
|
|
141 |
LAST_CLEANUP_FILE = "/data/last_cleanup.txt"
|
142 |
|
143 |
# Initialize directories
|
144 |
+
for d in (DATA_DIR, TMP_DIR, VIDEO_OUTPUT_DIR, VIDEO_IMG_DIR, VIDEO_TMP_DIR, MODEL_DIR):
|
145 |
if not os.path.exists(d):
|
146 |
try:
|
147 |
os.makedirs(d, exist_ok=True)
|
|
|
420 |
print(f"{yellow(f'VRAM available: {free_mem:.2f} GB, High VRAM mode: {hv}')}")
|
421 |
|
422 |
try:
|
423 |
+
print(f"{yellow('Loading models from /data/models...')}")
|
424 |
text_encoder = LlamaModel.from_pretrained(
|
425 |
+
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/text_encoder"), torch_dtype=torch.float16
|
426 |
).cpu().eval()
|
427 |
text_encoder_2 = CLIPTextModel.from_pretrained(
|
428 |
+
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/text_encoder_2"), torch_dtype=torch.float16
|
429 |
).cpu().eval()
|
430 |
tokenizer = LlamaTokenizerFast.from_pretrained(
|
431 |
+
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/tokenizer")
|
432 |
)
|
433 |
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
434 |
+
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/tokenizer_2")
|
435 |
)
|
436 |
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
437 |
+
os.path.join(MODEL_DIR, "hunyuanvideo-community/HunyuanVideo/vae"), torch_dtype=torch.float16
|
438 |
).cpu().eval()
|
439 |
feature_extractor = SiglipImageProcessor.from_pretrained(
|
440 |
+
os.path.join(MODEL_DIR, "lllyasviel/flux_redux_bfl/feature_extractor")
|
441 |
)
|
442 |
image_encoder = SiglipVisionModel.from_pretrained(
|
443 |
+
os.path.join(MODEL_DIR, "lllyasviel/flux_redux_bfl/image_encoder"), torch_dtype=torch.float16
|
444 |
).cpu().eval()
|
445 |
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
446 |
+
os.path.join(MODEL_DIR, "lllyasviel/FramePack_F1_I2V_HY_20250503"), torch_dtype=torch.bfloat16
|
447 |
).cpu().eval()
|
448 |
+
logger.info("Models loaded successfully from /data/models")
|
449 |
+
print(f"{green('Models loaded successfully from /data/models')}")
|
450 |
except Exception as e:
|
451 |
logger.error(f"Failed to load models: {e}", exc_info=True)
|
452 |
+
print(f"{red(f'Error: Failed to load models from /data/models: {e}')}")
|
453 |
raise
|
454 |
|
455 |
if not hv:
|
|
|
546 |
},
|
547 |
"paths": {
|
548 |
"base": BASE,
|
549 |
+
"models": MODEL_DIR,
|
550 |
"images": VIDEO_IMG_DIR,
|
551 |
"videos": VIDEO_OUTPUT_DIR,
|
552 |
"temp": VIDEO_TMP_DIR,
|
|
|
561 |
"videos_writable": os.access(VIDEO_OUTPUT_DIR, os.W_OK),
|
562 |
"temp_writable": os.access(VIDEO_TMP_DIR, os.W_OK),
|
563 |
"data_writable": os.access(DATA_DIR, os.W_OK),
|
564 |
+
"models_writable": os.access(MODEL_DIR, os.W_OK),
|
565 |
},
|
566 |
"dependencies": {
|
567 |
"xformers": status_xformers(),
|
|
|
622 |
logger.info(f"No active job {job_id} to stop")
|
623 |
print(f"{yellow(f'No active job {job_id} to stop')}")
|
624 |
return JSONResponse(content={"message": f"No active job {job_id}"})
|
625 |
+
stream = active_jobs[jid]
|
626 |
stream.stop()
|
627 |
active_jobs.pop(job_id, None)
|
628 |
job_status[job_id]["status"] = "stopped"
|
|
|
1374 |
logger.info(f"Public Gradio URL: {server.share_url}")
|
1375 |
print(f"{yellow(f'Public Gradio URL: {server.share_url}')}")
|
1376 |
logger.info(f"Gradio UI running on http://{args.server}:7860")
|
1377 |
+
print
|
|
|
|
|
|
|
|
|
|
|
|