Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,65 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
import pandas as pd
|
|
|
3 |
from sentence_transformers import SentenceTransformer, util
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
7 |
questions = faq_df["question"].tolist()
|
8 |
answers = faq_df["answer"].tolist()
|
9 |
|
10 |
-
model = SentenceTransformer(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
return
|
29 |
-
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
"""
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
with gr.Row():
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
out = gr.Dataframe(headers=["FAQ Question", "FAQ Answer", "Similarity"], visible=True, wrap=True)
|
48 |
-
|
49 |
-
search_btn.click(semantic_search, [query_box, topk_slider], out)
|
50 |
|
51 |
if __name__ == "__main__":
|
52 |
-
demo.launch(server_name="0.0.0.0"
|
|
|
1 |
+
# app.py β HF Space β’ MiniLM semantic FAQ search (CPU-only)
|
2 |
+
|
3 |
+
import re
|
4 |
+
from pathlib import Path
|
5 |
import pandas as pd
|
6 |
+
import gradio as gr
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
|
9 |
+
# βββββββββββ config βββββββββββ
|
10 |
+
CSV_PATH = Path("faqs.csv")
|
11 |
+
MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
12 |
+
|
13 |
+
# βββββββββββ load data/model βββββββββββ
|
14 |
+
faq_df = pd.read_csv(CSV_PATH)
|
15 |
questions = faq_df["question"].tolist()
|
16 |
answers = faq_df["answer"].tolist()
|
17 |
|
18 |
+
model = SentenceTransformer(MODEL_NAME)
|
19 |
+
question_embs = model.encode(
|
20 |
+
questions, convert_to_tensor=True, normalize_embeddings=True
|
21 |
+
)
|
22 |
+
|
23 |
+
# βββββββββββ tiny emoji tagger βββββββββββ
|
24 |
+
EMOJI_RULES = {
|
25 |
+
r"\b(shampoo|conditioner|mask)\b" : "π§΄",
|
26 |
+
r"\b(hair\s?spray|spray)\b" : "π¨",
|
27 |
+
r"\b(vegan|botanical|organic)\b" : "π±",
|
28 |
+
r"\b(heat|thermal)\b" : "π₯",
|
29 |
+
r"\b(balayage|color|colour|dye)\b" : "πββοΈ",
|
30 |
+
r"\b(scissors|cut|trim)\b" : "βοΈ",
|
31 |
+
}
|
32 |
+
def tag_emoji(text: str) -> str:
|
33 |
+
for pat, emo in EMOJI_RULES.items():
|
34 |
+
if re.search(pat, text, flags=re.I):
|
35 |
+
return emo
|
36 |
+
return "β"
|
37 |
+
|
38 |
+
# βββββββββββ search fn βββββββββββ
|
39 |
+
def search_faq(query: str, top_k: int):
|
40 |
+
if not query.strip():
|
41 |
+
return pd.DataFrame(columns=["Emoji", "Question", "Answer", "Score"])
|
42 |
+
q_emb = model.encode(query, convert_to_tensor=True, normalize_embeddings=True)
|
43 |
+
scores = util.cos_sim(q_emb, question_embs)[0]
|
44 |
+
idx_list = scores.topk(k=top_k).indices.cpu().tolist()
|
45 |
+
rows = [
|
46 |
+
[tag_emoji(answers[i]), questions[i], answers[i], round(float(scores[i]), 3)]
|
47 |
+
for i in idx_list
|
48 |
+
]
|
49 |
+
return pd.DataFrame(rows, columns=["Emoji", "Question", "Answer", "Score"])
|
50 |
+
|
51 |
+
# βββββββββββ gradio ui βββββββββββ
|
52 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="Semantic FAQ Search") as demo:
|
53 |
+
gr.Markdown("# π Semantic FAQ Search")
|
54 |
with gr.Row():
|
55 |
+
inp = gr.Textbox(label="Ask a question", lines=2,
|
56 |
+
placeholder="e.g. Which spray protects hair from heat?")
|
57 |
+
k = gr.Slider(1, 5, value=3, step=1, label="Number of results")
|
58 |
+
btn = gr.Button("Search", variant="primary")
|
59 |
+
table = gr.Dataframe(headers=["Emoji", "Question", "Answer", "Score"],
|
60 |
+
datatype=["str", "str", "str", "number"],
|
61 |
+
wrap=True, interactive=False)
|
62 |
+
btn.click(search_faq, [inp, k], table)
|
|
|
|
|
|
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
+
demo.launch(server_name="0.0.0.0")
|