Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sentence_transformers import SentenceTransformer, util
|
4 |
+
|
5 |
+
# ---------- Load data & model (all CPU-friendly) ----------
|
6 |
+
faq_df = pd.read_csv("faqs.csv")
|
7 |
+
questions = faq_df["question"].tolist()
|
8 |
+
answers = faq_df["answer"].tolist()
|
9 |
+
|
10 |
+
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
11 |
+
question_embeddings = model.encode(questions, convert_to_tensor=True, normalize_embeddings=True)
|
12 |
+
|
13 |
+
# ---------- Search function ----------
|
14 |
+
def semantic_search(user_query, top_k=3):
|
15 |
+
query_embedding = model.encode(user_query, convert_to_tensor=True, normalize_embeddings=True)
|
16 |
+
scores = util.cos_sim(query_embedding, question_embeddings)[0]
|
17 |
+
top_k_idx = scores.topk(k=top_k).indices.cpu().numpy()
|
18 |
+
|
19 |
+
results = []
|
20 |
+
for idx in top_k_idx:
|
21 |
+
results.append(
|
22 |
+
{
|
23 |
+
"FAQ Question": questions[idx],
|
24 |
+
"FAQ Answer" : answers[idx],
|
25 |
+
"Similarity" : f"{scores[idx]:.3f}"
|
26 |
+
}
|
27 |
+
)
|
28 |
+
return results
|
29 |
+
|
30 |
+
# ---------- Gradio UI ----------
|
31 |
+
with gr.Blocks(title="MiniLM Semantic FAQ Search") as demo:
|
32 |
+
gr.Markdown(
|
33 |
+
"""
|
34 |
+
# 🔍 Semantic FAQ Search
|
35 |
+
Enter a salon-related question. The model finds the closest FAQs and displays their answers.
|
36 |
+
""")
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
query_box = gr.Textbox(
|
40 |
+
label="Ask a question",
|
41 |
+
placeholder="e.g. Which spray protects hair from heat?"
|
42 |
+
)
|
43 |
+
topk_slider = gr.Slider(
|
44 |
+
1, 5, value=3, step=1, label="Number of results"
|
45 |
+
)
|
46 |
+
search_btn = gr.Button("Search")
|
47 |
+
out = gr.Dataframe(headers=["FAQ Question", "FAQ Answer", "Similarity"], visible=True, wrap=True)
|
48 |
+
|
49 |
+
search_btn.click(semantic_search, [query_box, topk_slider], out)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
demo.launch(server_name="0.0.0.0", show_error=True)
|