Spaces:
Running
Running
File size: 12,493 Bytes
716f8aa 44993c6 09d4e3b 716f8aa d079ec5 09d4e3b 716f8aa d079ec5 716f8aa 09d4e3b 557f37f 09d4e3b 557f37f 716f8aa 86bc5ce bd2f44a 86bc5ce 557f37f 09d4e3b 86bc5ce 557f37f 09d4e3b 7546b72 d4c6b5f 7546b72 44993c6 09d4e3b d079ec5 557f37f 716f8aa 7546b72 716f8aa d079ec5 557f37f 44993c6 716f8aa 44993c6 716f8aa 7546b72 716f8aa 44993c6 716f8aa 44993c6 716f8aa 44993c6 716f8aa 44993c6 716f8aa 7546b72 716f8aa 09d4e3b 716f8aa 44993c6 09d4e3b 716f8aa 44993c6 716f8aa d4c6b5f 716f8aa 09d4e3b 716f8aa d4c6b5f 716f8aa 44993c6 d4c6b5f 716f8aa d4c6b5f 716f8aa 7546b72 716f8aa 7546b72 716f8aa d079ec5 716f8aa b304574 716f8aa 557f37f d079ec5 7546b72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# Imports
from pathlib import Path
import tempfile
import os
import gradio as gr
import librosa
import tgt.core
import tgt.io3
import soundfile as sf
from transformers import pipeline
# Constants
TEXTGRID_DIR = tempfile.mkdtemp()
DEFAULT_MODEL = "ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa"
TEXTGRID_DOWNLOAD_TEXT = "Download TextGrid file"
TEXTGRID_NAME_INPUT_LABEL = "TextGrid file name"
# Selection of models
VALID_MODELS = [
"ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa1000-ns",
"ctaguchi/wav2vec2-large-xlsr-japlmthufielta-ipa-plus-2000",
"ginic/data_seed_bs64_1_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/data_seed_bs64_2_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/data_seed_bs64_3_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/data_seed_bs64_4_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_30_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_30_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_30_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_30_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_30_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_70_female_1_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_70_female_2_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_70_female_3_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_70_female_4_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/gender_split_70_female_5_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_old_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_old_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_old_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_young_only_1_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_young_only_2_wav2vec2-large-xlsr-53-buckeye-ipa",
"ginic/vary_individuals_young_only_3_wav2vec2-large-xlsr-53-buckeye-ipa",
]
def load_model_and_predict(
model_name: str,
audio_in: str,
model_state: dict,
):
try:
if audio_in is None:
return (
"",
model_state,
gr.Textbox(label=TEXTGRID_NAME_INPUT_LABEL, interactive=False),
)
if model_state["model_name"] != model_name:
model_state = {
"loaded_model": pipeline(task="automatic-speech-recognition", model=model_name),
"model_name": model_name,
}
prediction = model_state["loaded_model"](audio_in)["text"]
return prediction, model_state
except Exception as e:
raise gr.Error(f"Failed to load model: {str(e)}")
def get_textgrid_contents(audio_in, textgrid_tier_name, transcription_prediction):
if audio_in is None or transcription_prediction is None:
return ""
duration = librosa.get_duration(path=audio_in)
annotation = tgt.core.Interval(0, duration, transcription_prediction)
transcription_tier = tgt.core.IntervalTier(
start_time=0, end_time=duration, name=textgrid_tier_name
)
transcription_tier.add_annotation(annotation)
textgrid = tgt.core.TextGrid()
textgrid.add_tier(transcription_tier)
return tgt.io3.export_to_long_textgrid(textgrid)
def write_textgrid(textgrid_contents, textgrid_filename):
"""Writes the text grid contents to a named file in the temporary directory.
Returns the path for download.
"""
textgrid_path = Path(TEXTGRID_DIR) / Path(textgrid_filename).name
textgrid_path.write_text(textgrid_contents)
return textgrid_path
def get_interactive_download_button(textgrid_contents, textgrid_filename):
return gr.DownloadButton(
label=TEXTGRID_DOWNLOAD_TEXT,
variant="primary",
interactive=True,
value=write_textgrid(textgrid_contents, textgrid_filename),
)
def transcribe_intervals(audio_in, textgrid_path, source_tier, target_tier, model_state):
if audio_in is None or textgrid_path is None:
return "Missing audio or TextGrid input file."
tg=tgt.io.read_textgrid(textgrid_path.name)
tier = tg.get_tier_by_name(source_tier)
ipa_tier = tgt.core.IntervalTier(name=target_tier)
for interval in tier.intervals:
if not interval.text.strip(): # Skip empty text intervals
continue
start, end = interval.start_time, interval.end_time
try:
y, sr = librosa.load(audio_in, sr=None, offset=start, duration=end-start)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
sf.write(temp_audio.name, y, sr)
prediction = model_state["loaded_model"](temp_audio.name)["text"]
ipa_tier.add_annotation(tgt.core.Interval(start, end, prediction))
os.remove(temp_audio.name)
except Exception as e:
ipa_tier.add_annotation(tgt.core.Interval(start, end, f"[Error]: {str(e)}"))
tg.add_tier(ipa_tier)
tgt_str = tgt.io3.export_to_long_textgrid(tg)
return tgt_str
def extract_tier_names(textgrid_file):
try:
tg = tgt.io.read_textgrid(textgrid_file.name)
tier_names = [tier.name for tier in tg.tiers]
return gr.update(choices=tier_names, value=tier_names[0] if tier_names else None)
except Exception as e:
return gr.update(choices=[], value=None)
def validate_textgrid_for_intervals(audio_path, textgrid_file):
try:
if not audio_path or not textgrid_file:
return gr.update(interactive=False)
audio_duration = librosa.get_duration(path=audio_path)
tg = tgt.io.read_textgrid(textgrid_file.name)
tg_end_time = max(tier.end_time for tier in tg.tiers)
if tg_end_time > audio_duration:
raise gr.Error(
f"TextGrid ends at {tg_end_time:.2f}s but audio is only {audio_duration:.2f}s. "
"Please upload matching files."
)
epsilon = 0.01
if abs(tg_end_time - audio_duration) > epsilon:
gr.Warning(
f"TextGrid ends at {tg_end_time:.2f}s but audio is {audio_duration:.2f}s. "
"Only the annotated portion will be transcribed."
)
return gr.update(interactive=True)
except Exception as e:
raise gr.Error(f"Invalid TextGrid or audio file:\n{str(e)}")
def launch_demo():
initial_model = {
"loaded_model": pipeline(
task="automatic-speech-recognition", model=DEFAULT_MODEL
),
"model_name": DEFAULT_MODEL,
}
with gr.Blocks() as demo:
gr.Markdown("""# Automatic International Phonetic Alphabet Transcription
This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.""")
# Dropdown for model selection
model_name = gr.Dropdown(
VALID_MODELS,
value=DEFAULT_MODEL,
label="IPA transcription ASR model",
info="Select the model to use for prediction.",
)
# Dropdown for transcription type selection
transcription_type = gr.Dropdown(
choices=["Full Audio", "TextGrid Interval"],
label="Transcription Type",
value=None,
interactive=True,
)
model_state = gr.State(value=initial_model)
# Full audio transcription section
with gr.Column(visible=False) as full_audio_section:
full_audio = gr.Audio(type="filepath", show_download_button=True, label="Upload Audio File")
full_transcribe_btn = gr.Button("Transcribe Full Audio", interactive=False, variant="primary")
full_prediction = gr.Textbox(label="IPA Transcription", show_copy_button=True)
full_textgrid_tier = gr.Textbox(label="TextGrid Tier Name", value="transcription", interactive=True)
full_textgrid_contents = gr.Textbox(label="TextGrid Contents", show_copy_button=True)
full_download_btn = gr.DownloadButton(label=TEXTGRID_DOWNLOAD_TEXT, interactive=False, variant="primary")
full_reset_btn = gr.Button("Reset", variant="secondary")
# Interval transcription section
with gr.Column(visible=False) as interval_section:
interval_audio = gr.Audio(type="filepath", show_download_button=True, label="Upload Audio File")
interval_textgrid_file = gr.File(file_types=[".TextGrid"], label="Upload TextGrid File")
tier_names = gr.Dropdown(label="Source Tier (existing)", choices=[], interactive=True)
target_tier = gr.Textbox(label="Target Tier (new)", value="IPATier", placeholder="e.g. IPATier")
interval_transcribe_btn = gr.Button("Transcribe Intervals", interactive=False, variant="primary")
interval_result = gr.Textbox(label="IPA Interval Transcription", show_copy_button=True, interactive=False)
interval_download_btn = gr.DownloadButton(label=TEXTGRID_DOWNLOAD_TEXT, interactive=False, variant="primary")
interval_reset_btn = gr.Button("Reset", variant="secondary")
# Section visibility toggle
transcription_type.change(
fn=lambda t: (
gr.update(visible=t == "Full Audio"),
gr.update(visible=t == "TextGrid Interval"),
),
inputs=transcription_type,
outputs=[full_audio_section, interval_section],
)
# Enable full transcribe button after audio uploaded
full_audio.change(
fn=lambda audio: gr.update(interactive=audio is not None),
inputs=full_audio,
outputs=full_transcribe_btn,
)
# Full transcription logic
full_transcribe_btn.click(
fn=load_model_and_predict,
inputs=[model_name, full_audio, model_state],
outputs=[full_prediction, model_state],
)
full_prediction.change(
fn=get_textgrid_contents,
inputs=[full_audio, full_textgrid_tier, full_prediction],
outputs=[full_textgrid_contents],
)
full_textgrid_contents.change(
fn=lambda tg_text, audio_path: get_interactive_download_button(
tg_text,
Path(audio_path).with_suffix(".TextGrid").name if audio_path else "output.TextGrid"
),
inputs=[full_textgrid_contents, full_audio],
outputs=[full_download_btn],
)
full_reset_btn.click(
fn=lambda: (None, "", "", "", gr.update(interactive=False)),
outputs=[full_audio, full_prediction, full_textgrid_contents, full_download_btn],
)
# Enable interval transcribe button only when both files are uploaded
interval_audio.change(
fn=validate_textgrid_for_intervals,
inputs=[interval_audio, interval_textgrid_file],
outputs=[interval_transcribe_btn],
)
interval_textgrid_file.change(
fn=validate_textgrid_for_intervals,
inputs=[interval_audio, interval_textgrid_file],
outputs=[interval_transcribe_btn],
)
# Interval logic
interval_textgrid_file.change(
fn=extract_tier_names,
inputs=[interval_textgrid_file],
outputs=[tier_names],
)
interval_transcribe_btn.click(
fn=transcribe_intervals,
inputs=[interval_audio, interval_textgrid_file, tier_names, target_tier, model_state],
outputs=[interval_result],
)
interval_result.change(
fn=lambda tg_text, audio_path: gr.update(
value=write_textgrid(
tg_text,
Path(audio_path).with_suffix(".TextGrid").name
),
interactive=True,
),
inputs=[interval_result, interval_audio],
outputs=[interval_download_btn],
)
interval_reset_btn.click(
fn=lambda: (None, None, gr.update(choices=[]), "IPATier", "", gr.update(interactive=False)),
outputs=[interval_audio, interval_textgrid_file, tier_names, target_tier, interval_result, interval_download_btn],
)
demo.launch(max_file_size="100mb")
if __name__ == "__main__":
launch_demo() |