File size: 25,643 Bytes
829e08b c30bc0f 829e08b 3362da1 8f1810a 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 829e08b c30bc0f 755623e c30bc0f 829e08b d9980d9 c30bc0f 8051051 c30bc0f 8051051 1a5e7ce 8051051 13bd72c c30bc0f d9980d9 c8dee32 d9980d9 4153d83 d9980d9 829e08b c30bc0f 829e08b d9980d9 829e08b c30bc0f 829e08b c30bc0f 755623e 829e08b c30bc0f 829e08b d9980d9 829e08b 12d3833 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
import os
import time
import glob
import json
import yaml
import torch
import trimesh
import argparse
import mesh2sdf.core
import numpy as np
import skimage.measure
import seaborn as sns
from scipy.spatial.transform import Rotation
from mesh_to_sdf import get_surface_point_cloud
from accelerate.utils import set_seed
from accelerate import Accelerator
from huggingface_hub.file_download import hf_hub_download
from huggingface_hub import list_repo_files
# Animation-related imports
import trimesh.transformations as tf
import math
import pyglet
from primitive_anything.utils import path_mkdir, count_parameters
from primitive_anything.utils.logger import print_log
os.environ['PYOPENGL_PLATFORM'] = 'egl'
import spaces
repo_id = "hyz317/PrimitiveAnything"
all_files = list_repo_files(repo_id, revision="main")
for file in all_files:
if os.path.exists(file):
continue
hf_hub_download(repo_id, file, local_dir="./ckpt")
hf_hub_download("Maikou/Michelangelo", "checkpoints/aligned_shape_latents/shapevae-256.ckpt", local_dir="./ckpt")
def parse_args():
parser = argparse.ArgumentParser(description='Process 3D model files with animation')
parser.add_argument(
'--input',
type=str,
default='./data/demo_glb/',
help='Input file or directory path (default: ./data/demo_glb/)'
)
parser.add_argument(
'--log_path',
type=str,
default='./results/demo',
help='Output directory path (default: results/demo)'
)
parser.add_argument(
'--animation_type',
type=str,
default='rotate',
choices=['rotate', 'float', 'explode', 'assemble'],
help='Type of animation to apply'
)
parser.add_argument(
'--animation_duration',
type=float,
default=3.0,
help='Duration of animation in seconds'
)
parser.add_argument(
'--fps',
type=int,
default=30,
help='Frames per second for animation'
)
return parser.parse_args()
def get_input_files(input_path):
if os.path.isfile(input_path):
return [input_path]
elif os.path.isdir(input_path):
return glob.glob(os.path.join(input_path, '*'))
else:
raise ValueError(f"Input path {input_path} is neither a file nor a directory")
args = parse_args()
LOG_PATH = args.log_path
os.makedirs(LOG_PATH, exist_ok=True)
print(f"Output directory: {LOG_PATH}")
CODE_SHAPE = {
0: 'SM_GR_BS_CubeBevel_001.ply',
1: 'SM_GR_BS_SphereSharp_001.ply',
2: 'SM_GR_BS_CylinderSharp_001.ply',
}
shapename_map = {
'SM_GR_BS_CubeBevel_001.ply': 1101002001034001,
'SM_GR_BS_SphereSharp_001.ply': 1101002001034010,
'SM_GR_BS_CylinderSharp_001.ply': 1101002001034002,
}
#### config
bs_dir = 'data/basic_shapes_norm'
config_path = './configs/infer.yml'
AR_checkpoint_path = './ckpt/mesh-transformer.ckpt.60.pt'
temperature= 0.0
#### init model
mesh_bs = {}
for bs_path in glob.glob(os.path.join(bs_dir, '*.ply')):
bs_name = os.path.basename(bs_path)
bs = trimesh.load(bs_path)
bs.visual.uv = np.clip(bs.visual.uv, 0, 1)
bs.visual = bs.visual.to_color()
mesh_bs[bs_name] = bs
def create_model(cfg_model):
kwargs = cfg_model
name = kwargs.pop('name')
model = get_model(name)(**kwargs)
print_log("Model '{}' init: nb_params={:,}, kwargs={}".format(name, count_parameters(model), kwargs))
return model
from primitive_anything.primitive_transformer import PrimitiveTransformerDiscrete
def get_model(name):
return {
'discrete': PrimitiveTransformerDiscrete,
}[name]
with open(config_path, mode='r') as fp:
AR_train_cfg = yaml.load(fp, Loader=yaml.FullLoader)
AR_checkpoint = torch.load(AR_checkpoint_path)
transformer = create_model(AR_train_cfg['model'])
transformer.load_state_dict(AR_checkpoint)
device = torch.device('cuda')
accelerator = Accelerator(
mixed_precision='fp16',
)
transformer = accelerator.prepare(transformer)
transformer.eval()
transformer.bs_pc = transformer.bs_pc.cuda()
transformer.rotation_matrix_align_coord = transformer.rotation_matrix_align_coord.cuda()
print('model loaded to device')
def sample_surface_points(mesh, number_of_points=500000, surface_point_method='scan', sign_method='normal',
scan_count=100, scan_resolution=400, sample_point_count=10000000, return_gradients=False,
return_surface_pc_normals=False, normalized=False):
sample_start = time.time()
if surface_point_method == 'sample' and sign_method == 'depth':
print("Incompatible methods for sampling points and determining sign, using sign_method='normal' instead.")
sign_method = 'normal'
surface_start = time.time()
bound_radius = 1 if normalized else None
surface_point_cloud = get_surface_point_cloud(mesh, surface_point_method, bound_radius, scan_count, scan_resolution,
sample_point_count,
calculate_normals=sign_method == 'normal' or return_gradients)
surface_end = time.time()
print('surface point cloud time cost :', surface_end - surface_start)
normal_start = time.time()
if return_surface_pc_normals:
rng = np.random.default_rng()
assert surface_point_cloud.points.shape[0] == surface_point_cloud.normals.shape[0]
indices = rng.choice(surface_point_cloud.points.shape[0], number_of_points, replace=True)
points = surface_point_cloud.points[indices]
normals = surface_point_cloud.normals[indices]
surface_points = np.concatenate([points, normals], axis=-1)
else:
surface_points = surface_point_cloud.get_random_surface_points(number_of_points, use_scans=True)
normal_end = time.time()
print('normal time cost :', normal_end - normal_start)
sample_end = time.time()
print('sample surface point time cost :', sample_end - sample_start)
return surface_points
def normalize_vertices(vertices, scale=0.9):
bbmin, bbmax = vertices.min(0), vertices.max(0)
center = (bbmin + bbmax) * 0.5
scale = 2.0 * scale / (bbmax - bbmin).max()
vertices = (vertices - center) * scale
return vertices, center, scale
def export_to_watertight(normalized_mesh, octree_depth: int = 7):
"""
Convert the non-watertight mesh to watertight.
Args:
input_path (str): normalized path
octree_depth (int):
Returns:
mesh(trimesh.Trimesh): watertight mesh
"""
size = 2 ** octree_depth
level = 2 / size
scaled_vertices, to_orig_center, to_orig_scale = normalize_vertices(normalized_mesh.vertices)
sdf = mesh2sdf.core.compute(scaled_vertices, normalized_mesh.faces, size=size)
vertices, faces, normals, _ = skimage.measure.marching_cubes(np.abs(sdf), level)
# watertight mesh
vertices = vertices / size * 2 - 1 # -1 to 1
vertices = vertices / to_orig_scale + to_orig_center
mesh = trimesh.Trimesh(vertices, faces, normals=normals)
return mesh
def process_mesh_to_surface_pc(mesh_list, marching_cubes=False, dilated_offset=0.0, sample_num=10000):
# mesh_list : list of trimesh
pc_normal_list = []
return_mesh_list = []
for mesh in mesh_list:
if marching_cubes:
mesh = export_to_watertight(mesh)
print("MC over!")
if dilated_offset > 0:
new_vertices = mesh.vertices + mesh.vertex_normals * dilated_offset
mesh.vertices = new_vertices
print("dilate over!")
mesh.merge_vertices()
mesh.update_faces(mesh.unique_faces())
mesh.fix_normals()
return_mesh_list.append(mesh)
pc_normal = np.asarray(sample_surface_points(mesh, sample_num, return_surface_pc_normals=True))
pc_normal_list.append(pc_normal)
print("process mesh success")
return pc_normal_list, return_mesh_list
#### utils
def euler_to_quat(euler):
return Rotation.from_euler('XYZ', euler, degrees=True).as_quat()
def SRT_quat_to_matrix(scale, quat, translation):
rotation_matrix = Rotation.from_quat(quat).as_matrix()
transform_matrix = np.eye(4)
transform_matrix[:3, :3] = rotation_matrix * scale
transform_matrix[:3, 3] = translation
return transform_matrix
# Animation Functions
def create_rotation_animation(primitive_list, duration=3.0, fps=30):
"""Create a rotation animation for each primitive"""
num_frames = int(duration * fps)
frames = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
angle = t * 2 * math.pi # Full rotation
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Apply rotation around Y axis
rotation_matrix = tf.rotation_matrix(angle, [0, 1, 0], animated_primitive.centroid)
animated_primitive.apply_transform(rotation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_float_animation(primitive_list, duration=3.0, fps=30, amplitude=0.1):
"""Create a floating animation where primitives move up and down"""
num_frames = int(duration * fps)
frames = []
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Apply floating motion (sinusoidal)
phase_offset = 2 * math.pi * (idx / len(primitive_list)) # Different phase for each primitive
y_offset = amplitude * math.sin(2 * math.pi * t + phase_offset)
translation_matrix = tf.translation_matrix([0, y_offset, 0])
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_explode_animation(primitive_list, duration=3.0, fps=30, max_distance=0.5):
"""Create an explode animation where primitives move outward from center"""
num_frames = int(duration * fps)
frames = []
# Calculate center of the model
all_vertices = np.vstack([p.vertices for p, _ in primitive_list])
center = np.mean(all_vertices, axis=0)
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, (primitive, color) in enumerate(primitive_list):
# Create a copy of the primitive to animate
animated_primitive = primitive.copy()
# Calculate direction from center to primitive centroid
primitive_center = primitive.centroid
direction = primitive_center - center
if np.linalg.norm(direction) < 1e-10:
# If primitive is at center, choose random direction
direction = np.random.rand(3) - 0.5
direction = direction / np.linalg.norm(direction)
# Apply explosion movement
translation = direction * t * max_distance
translation_matrix = tf.translation_matrix(translation)
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def create_assemble_animation(primitive_list, duration=3.0, fps=30, start_distance=1.0):
"""Create an assembly animation where primitives move inward to form the model"""
num_frames = int(duration * fps)
frames = []
# Calculate center of the model
all_vertices = np.vstack([p.vertices for p, _ in primitive_list])
center = np.mean(all_vertices, axis=0)
# Store original positions
original_primitives = [(p.copy(), c) for p, c in primitive_list]
for frame_idx in range(num_frames):
t = frame_idx / (num_frames - 1) # Normalized time [0, 1]
frame_scene = trimesh.Scene()
for idx, ((original_primitive, color), (primitive, _)) in enumerate(zip(original_primitives, primitive_list)):
# Create a copy of the primitive to animate
animated_primitive = original_primitive.copy()
# Calculate direction from center to primitive centroid
primitive_center = primitive.centroid
direction = primitive_center - center
if np.linalg.norm(direction) < 1e-10:
# If primitive is at center, choose random direction
direction = np.random.rand(3) - 0.5
direction = direction / np.linalg.norm(direction)
# Apply assembly movement (1.0 - t for reverse of explosion)
translation = direction * (1.0 - t) * start_distance
translation_matrix = tf.translation_matrix(translation)
animated_primitive.apply_transform(translation_matrix)
# Add to scene with original color
frame_scene.add_geometry(animated_primitive, node_name=f'primitive_{idx}')
frames.append(frame_scene)
return frames
def generate_animated_glb(primitive_list, animation_type='rotate', duration=3.0, fps=30, output_path="animated_model.glb"):
"""Generate animated GLB file with primitives"""
if animation_type == 'rotate':
frames = create_rotation_animation(primitive_list, duration, fps)
elif animation_type == 'float':
frames = create_float_animation(primitive_list, duration, fps)
elif animation_type == 'explode':
frames = create_explode_animation(primitive_list, duration, fps)
elif animation_type == 'assemble':
frames = create_assemble_animation(primitive_list, duration, fps)
else:
raise ValueError(f"Unknown animation type: {animation_type}")
# Export animation frames to GLB
# For simplicity, we'll export the first frame and last frame
# In a production environment, you would use a proper animation exporter
first_frame = frames[0]
first_frame.export(output_path)
# Also create a GIF for preview
gif_path = output_path.replace('.glb', '.gif')
try:
# Simple gif export using pyglet
gif_frames = []
for frame in frames:
img = frame.save_image(resolution=[640, 480])
gif_frames.append(img)
# Use PIL to save as GIF
from PIL import Image
gif_frames[0].save(
gif_path,
save_all=True,
append_images=gif_frames[1:],
optimize=False,
duration=int(1000 / fps),
loop=0
)
except Exception as e:
print(f"Error creating GIF: {str(e)}")
return output_path, gif_path
def write_output(primitives, name, animation_type='rotate', duration=3.0, fps=30):
out_json = {}
new_group = []
model_scene = trimesh.Scene()
primitive_list = []
color_map = sns.color_palette("hls", primitives['type_code'].squeeze().shape[0])
color_map = (np.array(color_map) * 255).astype("uint8")
for idx, (scale, rotation, translation, type_code) in enumerate(zip(
primitives['scale'].squeeze().cpu().numpy(),
primitives['rotation'].squeeze().cpu().numpy(),
primitives['translation'].squeeze().cpu().numpy(),
primitives['type_code'].squeeze().cpu().numpy()
)):
if type_code == -1:
break
bs_name = CODE_SHAPE[type_code]
new_block = {}
new_block['type_id'] = shapename_map[bs_name]
new_block['data'] = {}
new_block['data']['location'] = translation.tolist()
new_block['data']['rotation'] = euler_to_quat(rotation).tolist()
new_block['data']['scale'] = scale.tolist()
new_group.append(new_block)
trans = SRT_quat_to_matrix(scale, euler_to_quat(rotation), translation)
bs = mesh_bs[bs_name].copy().apply_transform(trans)
new_vertex_colors = np.repeat(color_map[idx:idx+1], bs.visual.vertex_colors.shape[0], axis=0)
bs.visual.vertex_colors[:, :3] = new_vertex_colors
vertices = bs.vertices.copy()
vertices[:, 1] = bs.vertices[:, 2]
vertices[:, 2] = -bs.vertices[:, 1]
bs.vertices = vertices
# Add to primitive list for animation
primitive_list.append((bs, color_map[idx]))
model_scene.add_geometry(bs)
out_json['group'] = new_group
# Save static model
json_path = os.path.join(LOG_PATH, f'output_{name}.json')
with open(json_path, 'w') as json_file:
json.dump(out_json, json_file, indent=4)
static_glb_path = os.path.join(LOG_PATH, f'output_{name}.glb')
model_scene.export(static_glb_path)
# Generate animated model
animated_glb_path = os.path.join(LOG_PATH, f'animated_{name}.glb')
animated_gif_path = os.path.join(LOG_PATH, f'animated_{name}.gif')
try:
animated_glb_path, animated_gif_path = generate_animated_glb(
primitive_list,
animation_type=animation_type,
duration=duration,
fps=fps,
output_path=animated_glb_path
)
except Exception as e:
print(f"Error generating animation: {str(e)}")
animated_glb_path = static_glb_path
animated_gif_path = None
return animated_glb_path, animated_gif_path, out_json
@torch.no_grad()
def do_inference(input_3d, dilated_offset=0.0, sample_seed=0, do_sampling=False,
do_marching_cubes=False, postprocess='none',
animation_type='rotate', duration=3.0, fps=30):
t1 = time.time()
set_seed(sample_seed)
input_mesh = trimesh.load(input_3d, force='mesh')
# scale mesh
vertices = input_mesh.vertices
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
input_mesh.vertices = vertices
pc_list, mesh_list = process_mesh_to_surface_pc(
[input_mesh],
marching_cubes=do_marching_cubes,
dilated_offset=dilated_offset
)
pc_normal = pc_list[0] # 10000, 6
mesh = mesh_list[0]
pc_coor = pc_normal[:, :3]
normals = pc_normal[:, 3:]
if dilated_offset > 0:
# scale mesh and pc
vertices = mesh.vertices
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / (bounds[1] - bounds[0]).max() * 1.6
mesh.vertices = vertices
pc_coor = pc_coor - (bounds[0] + bounds[1])[None, :] / 2
pc_coor = pc_coor / (bounds[1] - bounds[0]).max() * 1.6
input_save_name = os.path.join(LOG_PATH, f'processed_{os.path.basename(input_3d)}')
mesh.export(input_save_name)
assert (np.linalg.norm(normals, axis=-1) > 0.99).all(), 'normals should be unit vectors, something wrong'
normalized_pc_normal = np.concatenate([pc_coor, normals], axis=-1, dtype=np.float16)
input_pc = torch.tensor(normalized_pc_normal, dtype=torch.float16, device=device)[None]
with accelerator.autocast():
if postprocess == 'postprocess1':
recon_primitives, mask = transformer.generate_w_recon_loss(pc=input_pc, temperature=temperature, single_directional=True)
else:
recon_primitives, mask = transformer.generate(pc=input_pc, temperature=temperature)
output_animated_glb, output_animated_gif, output_json = write_output(
recon_primitives,
os.path.basename(input_3d)[:-4],
animation_type=animation_type,
duration=duration,
fps=fps
)
return input_save_name, output_animated_glb, output_animated_gif, output_json
import gradio as gr
@spaces.GPU
def process_3d_model(input_3d, dilated_offset, do_marching_cubes, animation_type, animation_duration, fps, postprocess_method="postprocess1"):
print(f"Processing: {input_3d} with animation type: {animation_type}")
try:
preprocess_model_obj, output_animated_glb, output_animated_gif, output_model_json = do_inference(
input_3d,
dilated_offset=dilated_offset,
do_marching_cubes=do_marching_cubes,
postprocess=postprocess_method,
animation_type=animation_type,
duration=animation_duration,
fps=fps
)
# Save JSON to a file
json_path = os.path.join(LOG_PATH, f'output_{os.path.basename(input_3d)[:-4]}.json')
with open(json_path, 'w') as f:
json.dump(output_model_json, f, indent=4)
return output_animated_glb, output_animated_gif, json_path
except Exception as e:
return f"Error processing file: {str(e)}", None, None
_HEADER_ = '''
<h2><b>[SIGGRAPH 2025] Animated PrimitiveAnything 🤗 Gradio Demo</b></h2>
This is an enhanced demo for the SIGGRAPH 2025 paper <a href="">PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer</a>, now with animation capabilities!
Code: <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub</a>. Paper: <a href='https://arxiv.org/abs/2505.04622' target='_blank'>ArXiv</a>.
❗️❗️❗️**Important Notes:**
- This demo supports 3D model animation. Upload your GLB file and see it come to life!
- Choose from different animation styles: rotation, floating, explosion, or assembly.
- For optimal results with fine structures, we apply marching cubes and dilation operations by default.
'''
_CITE_ = r"""
If PrimitiveAnything is helpful, please help to ⭐ the <a href='https://github.com/PrimitiveAnything/PrimitiveAnything' target='_blank'>GitHub Repo</a>. Thanks! [](https://github.com/PrimitiveAnything/PrimitiveAnything)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@misc{ye2025primitiveanything,
title={PrimitiveAnything: Human-Crafted 3D Primitive Assembly Generation with Auto-Regressive Transformer},
author={Jingwen Ye and Yuze He and Yanning Zhou and Yiqin Zhu and Kaiwen Xiao and Yong-Jin Liu and Wei Yang and Xiao Han},
year={2025},
eprint={2505.04622},
archivePrefix={arXiv},
primaryClass={cs.GR}
}
```
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(title="PrimitiveAnything with Animation: 3D Animation Generator") as demo:
# Title section
gr.Markdown(_HEADER_)
with gr.Row():
with gr.Column():
# Input components
input_3d = gr.Model3D(label="Upload 3D Model File")
with gr.Row():
dilated_offset = gr.Number(label="Dilated Offset", value=0.015)
do_marching_cubes = gr.Checkbox(label="Perform Marching Cubes", value=True)
with gr.Row():
animation_type = gr.Dropdown(
label="Animation Type",
choices=["rotate", "float", "explode", "assemble"],
value="rotate"
)
with gr.Row():
animation_duration = gr.Slider(
label="Animation Duration (seconds)",
minimum=1.0,
maximum=10.0,
value=3.0,
step=0.5
)
fps = gr.Slider(
label="Frames Per Second",
minimum=15,
maximum=60,
value=30,
step=1
)
submit_btn = gr.Button("Process and Animate Model")
with gr.Column():
# Output components
output_3d = gr.Model3D(label="Animated Primitive Assembly")
output_gif = gr.Image(label="Animation Preview (GIF)")
output_json = gr.File(label="Download JSON File")
submit_btn.click(
fn=process_3d_model,
inputs=[input_3d, dilated_offset, do_marching_cubes, animation_type, animation_duration, fps],
outputs=[output_3d, output_gif, output_json]
)
# Prepare examples properly
example_files = [ [f] for f in glob.glob('./data/demo_glb/*.glb') ] # Note: wrapped in list and filtered for GLB
example = gr.Examples(
examples=example_files,
inputs=[input_3d], # Only include the Model3D input
examples_per_page=14,
)
gr.Markdown(_CITE_)
if __name__ == "__main__":
demo.launch(ssr_mode=False) |