Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,747 Bytes
036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 289e506 4c9a6f0 036dfc6 4c9a6f0 a8084f8 036dfc6 0cf7a7f 4c9a6f0 036dfc6 4c9a6f0 036dfc6 4c9a6f0 289e506 ff70eba 90456d7 ff70eba 90456d7 ff70eba 90456d7 ff70eba 90456d7 289e506 90456d7 ff70eba 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 90456d7 289e506 036dfc6 4c9a6f0 036dfc6 289e506 90456d7 036dfc6 90456d7 ff70eba 90456d7 289e506 036dfc6 4c9a6f0 289e506 4c9a6f0 a050e48 56360b9 5a29a17 56360b9 5a29a17 56360b9 5a29a17 56360b9 5a29a17 56360b9 5a29a17 56360b9 036dfc6 4c9a6f0 3718837 5a29a17 d1f2c3f 5a29a17 036dfc6 4c9a6f0 036dfc6 4c9a6f0 289e506 036dfc6 a8084f8 036dfc6 90456d7 289e506 90456d7 289e506 90456d7 ff70eba 90456d7 289e506 90456d7 289e506 90456d7 ff70eba 90456d7 289e506 90456d7 289e506 036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 5a29a17 036dfc6 5a29a17 036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 4c9a6f0 036dfc6 4c9a6f0 289e506 4c9a6f0 036dfc6 289e506 90456d7 036dfc6 4c9a6f0 036dfc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image, ImageDraw, ImageFont
import requests
import json
import re
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
# Load the default image
DEFAULT_IMAGE_PATH = "cover1.webp"
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "prithivMLmods/EBook-Creative-Cover-Flux-LoRA"
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def is_korean_only(text):
"""Check if text contains only Korean characters (excluding spaces and punctuation)"""
# Remove spaces and common punctuation
cleaned_text = re.sub(r'[\s\.,!?]', '', text)
# Check if all remaining characters are Korean
return bool(cleaned_text) and all('\uAC00' <= char <= '\uD7A3' for char in cleaned_text)
def augment_prompt_with_llm(prompt):
"""Augment Korean prompt using Friendli LLM API"""
token = os.getenv("FRIENDLI_TOKEN")
if not token:
return prompt # Return original if no token
url = "https://api.friendli.ai/dedicated/v1/chat/completions"
headers = {
"Authorization": f"Bearer {token}",
"Content-Type": "application/json"
}
# Create a system message for prompt augmentation
system_message = """You are an expert at creating detailed, artistic prompts for ebook cover generation.
When given a Korean prompt, expand it into a detailed English description suitable for AI image generation.
Focus on visual elements, artistic style, composition, lighting, and mood.
Always end the prompt with '[trigger]' to activate the LoRA model."""
payload = {
"model": "dep89a2fld32mcm",
"messages": [
{
"role": "system",
"content": system_message
},
{
"role": "user",
"content": f"λ€μ νκ΅μ΄ ν둬ννΈλ₯Ό μ μμ±
νμ§ μμ±μ μν μμΈν μμ΄ ν둬ννΈλ‘ νμ₯ν΄μ£ΌμΈμ: {prompt}"
}
],
"max_tokens": 500,
"top_p": 0.8,
"stream": False
}
try:
response = requests.post(url, json=payload, headers=headers, timeout=30)
if response.status_code == 200:
result = response.json()
augmented_prompt = result['choices'][0]['message']['content']
return augmented_prompt
else:
print(f"API Error: {response.status_code}")
return prompt
except Exception as e:
print(f"Error calling LLM API: {e}")
return prompt
def get_korean_font(font_size):
"""Load NanumGothic font from the same directory as app.py"""
try:
# Try to load NanumGothic-Regular.ttf from the same directory
font_path = "NanumGothic-Regular.ttf"
return ImageFont.truetype(font_path, font_size)
except:
# If font file is not found, try alternative paths
alternative_paths = [
"./NanumGothic-Regular.ttf",
os.path.join(os.path.dirname(__file__), "NanumGothic-Regular.ttf"),
]
for path in alternative_paths:
try:
return ImageFont.truetype(path, font_size)
except:
continue
# Final fallback to default font
print("Warning: NanumGothic-Regular.ttf not found. Using default font.")
return ImageFont.load_default()
def add_text_overlay(image, title_ko, author_ko,
title_position, author_position, text_color,
title_size, author_size):
"""Add Korean text overlay to the generated image"""
# Create a copy of the image to work with
img_with_text = image.copy()
draw = ImageDraw.Draw(img_with_text)
# Load Korean fonts with custom sizes
title_font = get_korean_font(title_size)
author_font = get_korean_font(author_size)
# Get image dimensions
img_width, img_height = img_with_text.size
# Define position mappings
position_coords = {
"μλ¨": (img_width // 2, img_height // 10),
"μ€μ": (img_width // 2, img_height // 2),
"νλ¨": (img_width // 2, img_height * 9 // 10)
}
# Draw title (Korean only)
if title_ko:
title_x, title_y = position_coords[title_position]
# Get text bbox for centering
bbox = draw.textbbox((0, 0), title_ko, font=title_font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Draw text with shadow for better visibility
shadow_offset = 2
draw.text((title_x - text_width // 2 + shadow_offset, title_y - text_height // 2 + shadow_offset),
title_ko, font=title_font, fill="black")
draw.text((title_x - text_width // 2, title_y - text_height // 2),
title_ko, font=title_font, fill=text_color)
# Draw author (Korean only)
if author_ko:
# Add "μ§μμ΄: " prefix if not already present
if not author_ko.startswith("μ§μμ΄"):
author_text = f"μ§μμ΄: {author_ko}"
else:
author_text = author_ko
author_x, author_y = position_coords[author_position]
# Get text bbox for centering
bbox = draw.textbbox((0, 0), author_text, font=author_font)
text_width = bbox[2] - bbox[0]
text_height = bbox[3] - bbox[1]
# Draw text with shadow
draw.text((author_x - text_width // 2 + shadow_offset, author_y - text_height // 2 + shadow_offset),
author_text, font=author_font, fill="black")
draw.text((author_x - text_width // 2, author_y - text_height // 2),
author_text, font=author_font, fill=text_color)
return img_with_text
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
# Return empty list since we're not using predefined images
return []
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
title_ko: str,
author_ko: str,
title_position: str,
author_position: str,
text_color: str,
title_size: int,
author_size: int,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Add text overlay if any Korean text is provided
if title_ko or author_ko:
image = add_text_overlay(image, title_ko, author_ko,
title_position, author_position, text_color,
title_size, author_size)
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
def augment_prompt(prompt):
"""Handle prompt augmentation"""
if is_korean_only(prompt):
augmented = augment_prompt_with_llm(prompt)
return augmented
return prompt
examples = [
"An anime-style illustration of a handsome male character with long, dark, flowing hair tied back partially with a traditional hairpiece. He wears a flowing, light-colored traditional East Asian robe with dark accents. His expression is thoughtful and slightly troubled, with his hand near his temple. In the blurred background, there are other figures in similar traditional attire, suggesting a scene of action or conflict in a fantasy setting. The overall mood is serious and dramatic, reminiscent of wuxia or xianxia genres.",
"A fierce, action-oriented anime illustration of a male knight in full, dark, intricate armor. He has long, flowing dark hair and a confident, determined expression with a slight smirk. He wields a massive, ornate sword with a red glow on its blade, held high above his head in a striking pose. The background is a dramatic, desolate landscape with jagged mountains and a stormy, overcast sky, conveying a sense of epic conflict and adventure.",
"A haunting cathedral ruins bathed in ethereal moonlight, with ancient stone archways stretching toward a starlit sky. The title 'WHISPERS OF ETERNITY' appears in weathered silver lettering that seems to float between the pillars. Ghostly wisps of fog curl around crumbling gothic sculptures, while 'By Alexander Blackwood' is inscribed in elegant script that glows with a subtle blue luminescence. Delicate patterns of celestial symbols and arcane runes border the edges. [trigger]",
"A massive ancient tree with crystalline leaves dominates the composition, its translucent branches reaching across a sunset sky streaked with impossible colors. 'THE LUMINOUS Crown' is written in intricate golden calligraphy that intertwines with the branches. Mysterious glowing orbs float among the leaves, casting prismatic light. 'By Isabella Moonshadow' appears to be carved into the tree's bark. Sacred geometry patterns shimmer in the background. [trigger]",
"A dramatic spiral staircase made of weathered copper and stained glass descends into swirling cosmic depths. The title 'CHRONICLES OF THE INFINITE' spans the spiral in bold art deco typography that seems to be crafted from constellations. Nebulae and galaxies swirl in the background, while 'By Marcus Starweaver' appears to be formed from falling stardust. Complex mechanical clockwork elements frame the corners. [trigger]",
"An intricate doorway carved from ancient jade stands solitary in a field of shimmering black sand. 'GATES OF THE IMMORTAL' is emblazoned across the top in powerful metallic letters that seem to be forged from liquid mercury. Ethereal phoenix feathers drift across the scene, leaving trails of golden light. 'By Victoria Jade' flows along the bottom in brushstrokes that resemble living smoke. Sacred Chinese characters appear to float in the background. [trigger]",
"A magnificent underwater city of pearl and coral rises from abyssal depths, illuminated by bioluminescent sea life. 'DEPTHS OF WONDER' ripples across the scene in iridescent letters that appear to be formed from living water. Schools of ethereal fish create flowing patterns of light, while 'By Neptune Rivers' shimmers like mother-of-pearl below. Ancient Atlantean symbols pulse with a subtle aqua glow around the borders. [trigger]",
"A colossal steampunk clocktower pierces through storm clouds, its gears and mechanisms visible through crystalline walls. 'TIMEKEEPER'S LEGACY' is constructed from intricate brass and copper mechanisms that appear to be in constant motion. Lightning arcs between copper spires, while 'By Theodore Cogsworth' is etched in burnished bronze below. Mathematical equations and alchemical symbols float in the turbulent sky. [trigger]"
]
with gr.Blocks(theme=gr.themes.Soft(), analytics_enabled=False) as demo:
gr.HTML('<div class="title"> eBOOK Cover generation </div>')
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fginigen-Book-Cover.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fginigen-Book-Cover.hf.space&countColor=%23263759" />
</a>""")
with gr.Tabs() as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
augment_button = gr.Button("μ¦κ°", scale=0)
run_button = gr.Button("Run", scale=0)
# Modified to include the default image
result = gr.Image(
label="Result",
show_label=False,
value=DEFAULT_IMAGE_PATH # Set the default image
)
with gr.Accordion("Text Overlay Settings (νκΈ)", open=False):
with gr.Row():
with gr.Column():
title_ko = gr.Textbox(label="μ λͺ©", placeholder="νκΈ μ λͺ©μ μ
λ ₯νμΈμ")
title_position = gr.Radio(
label="μ λͺ© μμΉ",
choices=["μλ¨", "μ€μ", "νλ¨"],
value="μλ¨"
)
title_size = gr.Slider(
label="μ λͺ© κΈμ ν¬κΈ°",
minimum=20,
maximum=100,
value=48,
step=2
)
with gr.Column():
author_ko = gr.Textbox(label="μ§μμ΄", placeholder="μ§μμ΄ μ΄λ¦μ μ
λ ₯νμΈμ")
author_position = gr.Radio(
label="μ§μμ΄ μμΉ",
choices=["μλ¨", "μ€μ", "νλ¨"],
value="νλ¨"
)
author_size = gr.Slider(
label="μ§μμ΄ κΈμ ν¬κΈ°",
minimum=16,
maximum=60,
value=32,
step=2
)
with gr.Row():
font_name = gr.Dropdown(
label="ν°νΈ μ ν",
choices=["λλκ³ λ", "λλλͺ
μ‘°", "λ§μ κ³ λ", "λ°ν", "λμ", "κΈ°λ³Έ"],
value="λλκ³ λ"
)
text_color = gr.ColorPicker(
label="κΈμ μμ",
value="#FFFFFF"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Generated Images Gallery")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=6,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
height="auto"
)
refresh_btn = gr.Button("π Refresh Gallery")
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
# Augment button handler
augment_button.click(
fn=augment_prompt,
inputs=[prompt],
outputs=[prompt],
)
# Auto-augment Korean prompts
def handle_prompt_change(prompt_text):
if is_korean_only(prompt_text):
return augment_prompt_with_llm(prompt_text)
return prompt_text
# Optional: Auto-augment on prompt change (commented out to avoid too many API calls)
# prompt.change(
# fn=handle_prompt_change,
# inputs=[prompt],
# outputs=[prompt]
# )
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
title_ko,
author_ko,
title_position,
author_position,
text_color,
title_size,
author_size,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |