Keltezaa commited on
Commit
928912d
·
verified ·
1 Parent(s): 8ac6ea9

Delete app.old

Browse files
Files changed (1) hide show
  1. app.old +0 -797
app.old DELETED
@@ -1,797 +0,0 @@
1
- import os
2
- import gradio as gr
3
- import json
4
- import logging
5
- import torch
6
- from PIL import Image
7
- import spaces
8
- from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
9
- from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
10
- from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
11
- from transformers import AutoModelForCausalLM, CLIPTokenizer, CLIPProcessor, CLIPModel, LongformerTokenizer, LongformerModel
12
- import copy
13
- import random
14
- import time
15
- import requests
16
- import pandas as pd
17
-
18
- # Disable tokenizer parallelism
19
- os.environ["TOKENIZERS_PARALLELISM"] = "false"
20
-
21
- # Initialize the CLIP tokenizer and model
22
- clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
23
- clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
24
- clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
25
-
26
- # Initialize the Longformer tokenizer and model
27
- longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
28
- longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
29
-
30
- #Load prompts for randomization
31
- df = pd.read_csv('prompts.csv', header=None)
32
- prompt_values = df.values.flatten()
33
-
34
- # Load LoRAs from JSON file
35
- with open('loras.json', 'r') as f:
36
- loras = json.load(f)
37
-
38
- # Initialize the base model
39
- dtype = torch.bfloat16
40
- device = "cuda" if torch.cuda.is_available() else "cpu"
41
- base_model = "black-forest-labs/FLUX.1-dev"
42
-
43
- taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
44
- good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
45
- pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
46
-
47
- MAX_SEED = 2**32 - 1
48
-
49
- pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
50
-
51
- def process_input(input_text):
52
- # Tokenize and truncate input
53
- inputs = clip_processor(text=input_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
54
- return inputs
55
-
56
- # Example usage
57
- input_text = "Your long prompt goes here..."
58
- inputs = process_input(input_text)
59
-
60
- class calculateDuration:
61
- def __init__(self, activity_name=""):
62
- self.activity_name = activity_name
63
-
64
- def __enter__(self):
65
- self.start_time = time.time()
66
- return self
67
-
68
- def __exit__(self, exc_type, exc_value, traceback):
69
- self.end_time = time.time()
70
- self.elapsed_time = self.end_time - self.start_time
71
- if self.activity_name:
72
- print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
73
- else:
74
- print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
75
-
76
- def download_file(url, directory=None):
77
- if directory is None:
78
- directory = os.getcwd() # Use current working directory if not specified
79
-
80
- # Get the filename from the URL
81
- filename = url.split('/')[-1]
82
-
83
- # Full path for the downloaded file
84
- filepath = os.path.join(directory, filename)
85
-
86
- # Download the file
87
- response = requests.get(url)
88
- response.raise_for_status() # Raise an exception for bad status codes
89
-
90
- # Write the content to the file
91
- with open(filepath, 'wb') as file:
92
- file.write(response.content)
93
-
94
- return filepath
95
-
96
- def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
97
- selected_index = evt.index
98
- selected_indices = selected_indices or []
99
- if selected_index in selected_indices:
100
- selected_indices.remove(selected_index)
101
- else:
102
- if len(selected_indices) < 2:
103
- selected_indices.append(selected_index)
104
- else:
105
- gr.Warning("You can select up to 2 LoRAs, remove one to select a new one.")
106
- return gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), width, height, gr.update(), gr.update()
107
-
108
- selected_info_1 = "Select a LoRA 1"
109
- selected_info_2 = "Select a LoRA 2"
110
- selected_info_3 = "Select a LoRA 3"
111
- selected_info_4 = "Select a LoRA 4"
112
- lora_scale_1 = 0.5
113
- lora_scale_2 = 0.5
114
- lora_scale_3 = 0.5
115
- lora_scale_4 = 0.5
116
- lora_image_1 = None
117
- lora_image_2 = None
118
- lora_image_3 = None
119
- lora_image_4 = None
120
-
121
- if len(selected_indices) >= 1:
122
- lora1 = loras_state[selected_indices[0]]
123
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
124
- lora_image_1 = lora1['image']
125
- if len(selected_indices) >= 2:
126
- lora2 = loras_state[selected_indices[1]]
127
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
128
- lora_image_2 = lora2['image']
129
- if len(selected_indices) >= 3:
130
- lora3 = loras_state[selected_indices[2]]
131
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
132
- lora_image_3 = lora3['image']
133
- if len(selected_indices) >= 4:
134
- lora4 = loras_state[selected_indices[3]]
135
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
136
- lora_image_4 = lora4['image']
137
-
138
- if selected_indices:
139
- last_selected_lora = loras_state[selected_indices[-1]]
140
- new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
141
- else:
142
- new_placeholder = "Type a prompt after selecting a LoRA"
143
-
144
- return (gr.update(placeholder=new_placeholder), selected_info_1, selected_info_2,
145
- selected_info_3, selected_info_4, selected_indices,
146
- lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4,
147
- width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update())
148
-
149
- def randomize_loras(selected_indices, loras_state):
150
- if len(loras_state) < 2:
151
- raise gr.Error("Not enough LoRAs to randomize.")
152
-
153
- selected_indices = random.sample(range(len(loras_state)), 2)
154
- lora1 = loras_state[selected_indices[0]]
155
- lora2 = loras_state[selected_indices[1]]
156
-
157
- # Get trigger words for both selected LoRAs
158
- trigger_word_1 = lora1.get('trigger_word', '')
159
- trigger_word_2 = lora2.get('trigger_word', '')
160
-
161
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨ {trigger_word_1}"
162
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨ {trigger_word_2}"
163
-
164
- lora_scale_1 = 0.5
165
- lora_scale_2 = 0.5
166
- lora_image_1 = lora1['image']
167
- lora_image_2 = lora2['image']
168
- random_prompt = random.choice(prompt_values)
169
-
170
- return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, lora_image_1, lora_image_2, random_prompt
171
-
172
- def remove_lora_1(selected_indices, loras_state):
173
- if len(selected_indices) >= 1:
174
- selected_indices.pop(0)
175
- selected_info_1 = "Select a LoRA 1"
176
- selected_info_2 = "Select a LoRA 2"
177
- selected_info_3 = "Select a LoRA 3"
178
- selected_info_4 = "Select a LoRA 4"
179
- lora_scale_1 = 0.5
180
- lora_scale_2 = 0.5
181
- lora_scale_3 = 0.5
182
- lora_scale_4 = 0.5
183
- lora_image_1 = None
184
- lora_image_2 = None
185
- lora_image_3 = None
186
- lora_image_4 = None
187
- if len(selected_indices) >= 1:
188
- lora1 = loras_state[selected_indices[0]]
189
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
190
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
191
- lora_image_1 = lora1['image']
192
- if len(selected_indices) >= 2:
193
- lora2 = loras_state[selected_indices[1]]
194
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
195
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
196
- lora_image_2 = lora2['image']
197
- if len(selected_indices) >= 3:
198
- lora3 = loras_state[selected_indices[2]]
199
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
200
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
201
- lora_image_3 = lora3['image']
202
- if len(selected_indices) >= 4:
203
- lora4 = loras_state[selected_indices[3]]
204
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
205
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
206
- lora_image_4 = lora4['image']
207
- return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
208
-
209
- def remove_lora_2(selected_indices, loras_state):
210
- if len(selected_indices) >= 2:
211
- selected_indices.pop(1)
212
- selected_info_1 = "Select a LoRA 1"
213
- selected_info_2 = "Select a LoRA 2"
214
- selected_info_3 = "Select a LoRA 3"
215
- selected_info_4 = "Select a LoRA 4"
216
- lora_scale_1 = 0.5
217
- lora_scale_2 = 0.5
218
- lora_scale_3 = 0.5
219
- lora_scale_4 = 0.5
220
- lora_image_1 = None
221
- lora_image_2 = None
222
- lora_image_3 = None
223
- lora_image_4 = None
224
- if len(selected_indices) >= 1:
225
- lora1 = loras_state[selected_indices[0]]
226
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
227
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
228
- lora_image_1 = lora1['image']
229
- if len(selected_indices) >= 2:
230
- lora2 = loras_state[selected_indices[1]]
231
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
232
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
233
- lora_image_2 = lora2['image']
234
- if len(selected_indices) >= 3:
235
- lora3 = loras_state[selected_indices[2]]
236
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
237
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
238
- lora_image_3 = lora3['image']
239
- if len(selected_indices) >= 4:
240
- lora4 = loras_state[selected_indices[3]]
241
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
242
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
243
- lora_image_4 = lora4['image']
244
- return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
245
-
246
- def remove_lora_3(selected_indices, loras_state):
247
- if len(selected_indices) >= 3:
248
- selected_indices.pop(2)
249
- selected_info_1 = "Select a LoRA 1"
250
- selected_info_2 = "Select a LoRA 2"
251
- selected_info_3 = "Select a LoRA 3"
252
- selected_info_4 = "Select a LoRA 4"
253
- lora_scale_1 = 0.5
254
- lora_scale_2 = 0.5
255
- lora_scale_3 = 0.5
256
- lora_scale_4 = 0.5
257
- lora_image_1 = None
258
- lora_image_2 = None
259
- lora_image_3 = None
260
- lora_image_4 = None
261
- if len(selected_indices) >= 1:
262
- lora1 = loras_state[selected_indices[0]]
263
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
264
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
265
- lora_image_1 = lora1['image']
266
- if len(selected_indices) >= 2:
267
- lora2 = loras_state[selected_indices[1]]
268
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
269
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
270
- lora_image_2 = lora2['image']
271
- if len(selected_indices) >= 3:
272
- lora3 = loras_state[selected_indices[2]]
273
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
274
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
275
- lora_image_3 = lora3['image']
276
- if len(selected_indices) >= 4:
277
- lora4 = loras_state[selected_indices[3]]
278
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
279
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
280
- lora_image_4 = lora4['image']
281
- return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
282
-
283
- def remove_lora_4(selected_indices, loras_state):
284
- if len(selected_indices) >= 4:
285
- selected_indices.pop(3)
286
- selected_info_1 = "Select a LoRA 1"
287
- selected_info_2 = "Select a LoRA 2"
288
- selected_info_3 = "Select a LoRA 3"
289
- selected_info_4 = "Select a LoRA 4"
290
- lora_scale_1 = 0.5
291
- lora_scale_2 = 0.5
292
- lora_scale_3 = 0.5
293
- lora_scale_4 = 0.5
294
- lora_image_1 = None
295
- lora_image_2 = None
296
- lora_image_3 = None
297
- lora_image_4 = None
298
- if len(selected_indices) >= 1:
299
- lora1 = loras_state[selected_indices[0]]
300
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
301
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
302
- lora_image_1 = lora1['image']
303
- if len(selected_indices) >= 2:
304
- lora2 = loras_state[selected_indices[1]]
305
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
306
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
307
- lora_image_2 = lora2['image']
308
- if len(selected_indices) >= 3:
309
- lora3 = loras_state[selected_indices[2]]
310
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
311
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
312
- lora_image_3 = lora3['image']
313
- if len(selected_indices) >= 4:
314
- lora4 = loras_state[selected_indices[3]]
315
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
316
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
317
- lora_image_4 = lora4['image']
318
- return selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
319
-
320
- def add_custom_lora(custom_lora, selected_indices, current_loras, gallery):
321
- if custom_lora:
322
- try:
323
- title, repo, path, trigger_word, image = check_custom_model(custom_lora)
324
- print(f"Loaded custom LoRA: {repo}")
325
- existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
326
- if existing_item_index is None:
327
- if repo.endswith(".safetensors") and repo.startswith("http"):
328
- repo = download_file(repo)
329
- new_item = {
330
- "image": image if image else "/home/user/app/custom.png",
331
- "title": title,
332
- "repo": repo,
333
- "weights": path,
334
- "trigger_word": trigger_word
335
- }
336
- print(f"New LoRA: {new_item}")
337
- existing_item_index = len(current_loras)
338
- current_loras.append(new_item)
339
-
340
- # Update gallery
341
- gallery_items = [(item["image"], item["title"]) for item in current_loras]
342
- # Update selected_indices if there's room
343
- if len(selected_indices) < 4:
344
- selected_indices.append(existing_item_index)
345
- else:
346
- gr.Warning("You can select up to 4 LoRAs, remove one to select a new one.")
347
-
348
- # Update selected_info and images
349
- selected_info_1 = "Select a LoRA 1"
350
- selected_info_2 = "Select a LoRA 2"
351
- selected_info_3 = "Select a LoRA 3"
352
- selected_info_4 = "Select a LoRA 4"
353
- lora_scale_1 = 0.5
354
- lora_scale_2 = 0.5
355
- lora_scale_3 = 0.5
356
- lora_scale_4 = 0.5
357
- lora_image_1 = None
358
- lora_image_2 = None
359
- lora_image_3 = None
360
- lora_image_4 = None
361
- if len(selected_indices) >= 1:
362
- lora1 = loras_state[selected_indices[0]]
363
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
364
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
365
- lora_image_1 = lora1['image']
366
- if len(selected_indices) >= 2:
367
- lora2 = loras_state[selected_indices[1]]
368
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
369
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
370
- lora_image_2 = lora2['image']
371
- if len(selected_indices) >= 3:
372
- lora3 = loras_state[selected_indices[2]]
373
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
374
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
375
- lora_image_3 = lora3['image']
376
- if len(selected_indices) >= 4:
377
- lora4 = loras_state[selected_indices[3]]
378
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
379
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
380
- lora_image_4 = lora4['image']
381
- print("Finished adding custom LoRA")
382
- return current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
383
-
384
- except Exception as e:
385
- print(e)
386
- gr.Warning(str(e))
387
- return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
388
- else:
389
- return current_loras, gr.update(), gr.update(), gr.update(), selected_indices, gr.update(), gr.update(), gr.update(), gr.update()
390
-
391
- def remove_custom_lora(selected_indices, current_loras, gallery):
392
- if current_loras:
393
- custom_lora_repo = current_loras[-1]['repo']
394
- # Remove from loras list
395
- current_loras = current_loras[:-1]
396
- # Remove from selected_indices if selected
397
- custom_lora_index = len(current_loras)
398
- if custom_lora_index in selected_indices:
399
- selected_indices.remove(custom_lora_index)
400
- # Update gallery
401
- gallery_items = [(item["image"], item["title"]) for item in current_loras]
402
- # Update selected_info and images
403
- selected_info_1 = "Select a LoRA 1"
404
- selected_info_2 = "Select a LoRA 2"
405
- selected_info_3 = "Select a LoRA 3"
406
- selected_info_4 = "Select a LoRA 4"
407
- lora_scale_1 = 0.5
408
- lora_scale_2 = 0.5
409
- lora_scale_3 = 0.5
410
- lora_scale_4 = 0.5
411
- lora_image_1 = None
412
- lora_image_2 = None
413
- lora_image_3 = None
414
- lora_image_4 = None
415
- if len(selected_indices) >= 1:
416
- lora1 = loras_state[selected_indices[0]]
417
- trigger_word = lora1.get('trigger_word', '') # Get actual trigger word from LoRA 1
418
- selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨ {trigger_word}"
419
- lora_image_1 = lora1['image']
420
- if len(selected_indices) >= 2:
421
- lora2 = loras_state[selected_indices[1]]
422
- trigger_word = lora2.get('trigger_word', '') # Get actual trigger word from LoRA 2
423
- selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨ {trigger_word}"
424
- lora_image_2 = lora2['image']
425
- if len(selected_indices) >= 3:
426
- lora3 = loras_state[selected_indices[2]]
427
- trigger_word = lora3.get('trigger_word', '') # Get actual trigger word from LoRA 3
428
- selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨ {trigger_word}"
429
- lora_image_3 = lora3['image']
430
- if len(selected_indices) >= 4:
431
- lora4 = loras_state[selected_indices[3]]
432
- trigger_word = lora4.get('trigger_word', '') # Get actual trigger word from LoRA 4
433
- selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨ {trigger_word}"
434
- lora_image_4 = lora4['image']
435
- print("Finished adding custom LoRA")
436
- return (current_loras, gr.update(value=gallery_items), selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, gr.update()
437
- )
438
-
439
- def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
440
- print("Generating image...")
441
- pipe.to("cuda")
442
- generator = torch.Generator(device="cuda").manual_seed(seed)
443
- with calculateDuration("Generating image"):
444
- # Generate image
445
- for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
446
- prompt=prompt_mash,
447
- num_inference_steps=steps,
448
- guidance_scale=cfg_scale,
449
- width=width,
450
- height=height,
451
- generator=generator,
452
- joint_attention_kwargs={"scale": 1.0},
453
- output_type="pil",
454
- good_vae=good_vae,
455
- ):
456
- yield img
457
-
458
- def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
459
- pipe_i2i.to("cuda")
460
- generator = torch.Generator(device="cuda").manual_seed(seed)
461
- image_input = load_image(image_input_path)
462
- final_image = pipe_i2i(
463
- prompt=prompt_mash,
464
- image=image_input,
465
- strength=image_strength,
466
- num_inference_steps=steps,
467
- guidance_scale=cfg_scale,
468
- width=width,
469
- height=height,
470
- generator=generator,
471
- joint_attention_kwargs={"scale": 1.0},
472
- output_type="pil",
473
- ).images[0]
474
- return final_image
475
-
476
- @spaces.GPU(duration=75)
477
- def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
478
- if not selected_indices:
479
- raise gr.Error("You must select at least one LoRA before proceeding.")
480
-
481
- selected_loras = [loras_state[idx] for idx in selected_indices]
482
-
483
- # Build the prompt with trigger words
484
- prepends = []
485
- appends = []
486
- for lora in selected_loras:
487
- trigger_word = lora.get('trigger_word', '')
488
- if trigger_word:
489
- if lora.get("trigger_position") == "prepend":
490
- prepends.append(trigger_word)
491
- else:
492
- appends.append(trigger_word)
493
- prompt_mash = " ".join(prepends + [prompt] + appends)
494
- print("Prompt Mash: ", prompt_mash)
495
- # Unload previous LoRA weights
496
- with calculateDuration("Unloading LoRA"):
497
- pipe.unload_lora_weights()
498
- pipe_i2i.unload_lora_weights()
499
-
500
- print(pipe.get_active_adapters())
501
- # Load LoRA weights with respective scales
502
- lora_names = []
503
- lora_weights = []
504
- with calculateDuration("Loading LoRA weights"):
505
- for idx, lora in enumerate(selected_loras):
506
- lora_name = f"lora_{idx}"
507
- lora_names.append(lora_name)
508
- print(f"Lora Name: {lora_name}")
509
- lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
510
- lora_path = lora['repo']
511
- weight_name = lora.get("weights")
512
- print(f"Lora Path: {lora_path}")
513
- pipe_to_use = pipe_i2i if image_input is not None else pipe
514
- pipe_to_use.load_lora_weights(
515
- lora_path,
516
- weight_name=weight_name if weight_name else None,
517
- low_cpu_mem_usage=True,
518
- adapter_name=lora_name
519
- )
520
- if image_input is not None: pipe_i2i = pipe_to_use
521
- else: pipe = pipe_to_use
522
- print("Loaded LoRAs:", lora_names)
523
- print("Adapter weights:", lora_weights)
524
- if image_input is not None:
525
- pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
526
- else:
527
- pipe.set_adapters(lora_names, adapter_weights=lora_weights)
528
- print(pipe.get_active_adapters())
529
- # Set random seed for reproducibility
530
- with calculateDuration("Randomizing seed"):
531
- if randomize_seed:
532
- seed = random.randint(0, MAX_SEED)
533
-
534
- # Generate image
535
- if image_input is not None:
536
- final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
537
- yield final_image, seed, gr.update(visible=False)
538
- else:
539
- image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
540
- # Consume the generator to get the final image
541
- final_image = None
542
- step_counter = 0
543
- for image in image_generator:
544
- step_counter += 1
545
- final_image = image
546
- progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
547
- yield image, seed, gr.update(value=progress_bar, visible=True)
548
- yield final_image, seed, gr.update(value=progress_bar, visible=False)
549
-
550
- run_lora.zerogpu = True
551
-
552
- def get_huggingface_safetensors(link):
553
- split_link = link.split("/")
554
- if len(split_link) == 2:
555
- model_card = ModelCard.load(link)
556
- base_model = model_card.data.get("base_model")
557
- print(f"Base model: {base_model}")
558
- if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
559
- raise Exception("Not a FLUX LoRA!")
560
- image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
561
- trigger_word = model_card.data.get("instance_prompt", "")
562
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
563
- fs = HfFileSystem()
564
- safetensors_name = None
565
- try:
566
- list_of_files = fs.ls(link, detail=False)
567
- for file in list_of_files:
568
- if file.endswith(".safetensors"):
569
- safetensors_name = file.split("/")[-1]
570
- if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
571
- image_elements = file.split("/")
572
- image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
573
- except Exception as e:
574
- print(e)
575
- raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
576
- if not safetensors_name:
577
- raise gr.Error("No *.safetensors file found in the repository")
578
- return split_link[1], link, safetensors_name, trigger_word, image_url
579
- else:
580
- raise gr.Error("Invalid Hugging Face repository link")
581
-
582
- def check_custom_model(link):
583
- if link.endswith(".safetensors"):
584
- # Treat as direct link to the LoRA weights
585
- title = os.path.basename(link)
586
- repo = link
587
- path = None # No specific weight name
588
- trigger_word = ""
589
- image_url = None
590
- return title, repo, path, trigger_word, image_url
591
- elif link.startswith("https://"):
592
- if "huggingface.co" in link:
593
- link_split = link.split("huggingface.co/")
594
- return get_huggingface_safetensors(link_split[1])
595
- else:
596
- raise Exception("Unsupported URL")
597
- else:
598
- # Assume it's a Hugging Face model path
599
- return get_huggingface_safetensors(link)
600
-
601
- def update_history(new_image, history):
602
- """Updates the history gallery with the new image."""
603
- if history is None:
604
- history = []
605
- history.insert(0, new_image)
606
- return history
607
-
608
- css = '''
609
- #gen_btn{height: 100%}
610
- #title{text-align: center}
611
- #title h1{font-size: 3em; display:inline-flex; align-items:center}
612
- #title img{width: 100px; margin-right: 0.25em}
613
- #gallery .grid-wrap{height: 5vh}
614
- #lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
615
- .custom_lora_card{margin-bottom: 1em}
616
- .card_internal{display: flex;height: 100px;margin-top: .5em}
617
- .card_internal img{margin-right: 1em}
618
- .styler{--form-gap-width: 0px !important}
619
- #progress{height:30px}
620
- #progress .generating{display:none}
621
- .progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
622
- .progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
623
- #component-8, .button_total{height: 100%; align-self: stretch;}
624
- #loaded_loras [data-testid="block-info"]{font-size:80%}
625
- #custom_lora_structure{background: var(--block-background-fill)}
626
- #custom_lora_btn{margin-top: auto;margin-bottom: 11px}
627
- #random_btn{font-size: 300%}
628
- #component-11{align-self: stretch;}
629
- #trigger_word{font-size: 1.5em; text-align: center; margin-top: 20px;}
630
- '''
631
-
632
- with gr.Blocks(css=css, delete_cache=(240, 240)) as app:
633
- title = gr.HTML(
634
- """<h1><img src="https://huggingface.co/spaces/Keltezaa/Celebrity-flux-lora/resolve/main/solo-traveller_16875043.png" alt=" "> Celebrity-flux-lora</h1><br><span style="
635
- margin-top: -25px !important;
636
- display: block;
637
- margin-left: 37px;
638
- ">Mix and match any FLUX[dev] LoRAs</span>""",
639
- elem_id="title",
640
- )
641
- loras_state = gr.State(loras)
642
- selected_indices = gr.State([])
643
- trigger_word_display = gr.Markdown("", elem_id="trigger_word")
644
-
645
- with gr.Row():
646
- with gr.Column(scale=3):
647
- prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
648
-
649
- with gr.Row(elem_id="loaded_loras"):
650
-
651
- with gr.Column(scale=8):
652
- with gr.Row():
653
- with gr.Column(scale=0, min_width=50):
654
- lora_image_1 = gr.Image(label="LoRA 1 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
655
- with gr.Column(scale=3, min_width=100):
656
- selected_info_1 = gr.Markdown("Select a LoRA 1")
657
- with gr.Column(scale=5, min_width=50):
658
- lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
659
- with gr.Row():
660
- remove_button_1 = gr.Button("Remove", size="sm")
661
-
662
- with gr.Column(scale=8):
663
- with gr.Row():
664
- with gr.Column(scale=0, min_width=50):
665
- lora_image_2 = gr.Image(label="LoRA 2 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
666
- with gr.Column(scale=3, min_width=100):
667
- selected_info_2 = gr.Markdown("Select a LoRA 2")
668
- with gr.Column(scale=5, min_width=50):
669
- lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
670
- with gr.Row():
671
- remove_button_2 = gr.Button("Remove", size="sm")
672
-
673
- with gr.Column(scale=1,min_width=50):
674
- randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
675
-
676
- with gr.Row(elem_id="loaded_loras"):
677
- with gr.Column(scale=8):
678
- with gr.Row():
679
- with gr.Column(scale=0, min_width=50):
680
- lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
681
- with gr.Column(scale=3, min_width=100):
682
- selected_info_3 = gr.Markdown("Select a LoRA 3")
683
- with gr.Column(scale=5, min_width=50):
684
- lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
685
- with gr.Row():
686
- remove_button_3 = gr.Button("Remove", size="sm")
687
- with gr.Column(scale=8):
688
- with gr.Row():
689
- with gr.Column(scale=0, min_width=50):
690
- lora_image_4 = gr.Image(label="LoRA 4 Image", interactive=False, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
691
- with gr.Column(scale=3, min_width=100):
692
- selected_info_4 = gr.Markdown("Select a LoRA 4")
693
- with gr.Column(scale=5, min_width=150):
694
- lora_scale_4 = gr.Slider(label="LoRA 4 Scale", minimum=0, maximum=3, step=0.05, value=0.5)
695
- with gr.Row():
696
- remove_button_4 = gr.Button("Remove", size="sm")
697
-
698
- with gr.Row():
699
- with gr.Accordion("Advanced Settings", open=False):
700
- #with gr.Row():
701
- # input_image = gr.Image(label="Input image", type="filepath", show_share_button=False)
702
- # image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
703
- with gr.Column():
704
- with gr.Row():
705
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=7.5)
706
- steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
707
-
708
- with gr.Row():
709
- width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
710
- height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
711
-
712
- with gr.Row():
713
- randomize_seed = gr.Checkbox(True, label="Randomize seed")
714
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
715
-
716
- with gr.Row():
717
- with gr.Column(scale=3):
718
- generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
719
-
720
- with gr.Row():
721
- with gr.Column():
722
- with gr.Group():
723
- with gr.Row(elem_id="custom_lora_structure"):
724
- custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
725
- add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
726
- remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
727
- gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
728
- gallery = gr.Gallery(
729
- [(item["image"], item["title"]) for item in loras],
730
- label="Or pick from the gallery",
731
- allow_preview=False,
732
- columns=5,
733
- elem_id="gallery",
734
- show_share_button=False,
735
- interactive=False
736
- )
737
- with gr.Column():
738
- progress_bar = gr.Markdown(elem_id="progress", visible=False)
739
- result = gr.Image(label="Generated Image", interactive=False, show_share_button=False)
740
- #with gr.Accordion("History", open=False):
741
- # history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
742
-
743
- gallery.select(
744
- update_selection,
745
- inputs=[selected_indices, loras_state, width, height],
746
- outputs=[prompt, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, width, height, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
747
- )
748
-
749
- remove_button_1.click(
750
- remove_lora_1,
751
- inputs=[selected_indices, loras_state],
752
- outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
753
- )
754
-
755
- remove_button_2.click(
756
- remove_lora_2,
757
- inputs=[selected_indices, loras_state],
758
- outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
759
- )
760
-
761
- remove_button_3.click(
762
- remove_lora_3,
763
- inputs=[selected_indices, loras_state],
764
- outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
765
- )
766
-
767
- remove_button_4.click(
768
- remove_lora_4,
769
- inputs=[selected_indices, loras_state],
770
- outputs=[selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
771
- )
772
-
773
- add_custom_lora_button.click(
774
- add_custom_lora,
775
- inputs=[custom_lora, selected_indices, loras_state, gallery],
776
- outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
777
- )
778
-
779
- remove_custom_lora_button.click(
780
- remove_custom_lora,
781
- inputs=[selected_indices, loras_state, gallery],
782
- outputs=[loras_state, gallery, selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_image_1, lora_image_2, lora_image_3, lora_image_4, trigger_word_display]
783
- )
784
-
785
- gr.on(
786
- triggers=[generate_button.click, prompt.submit],
787
- fn=run_lora,
788
- inputs=[prompt, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, randomize_seed, seed, width, height, loras_state],
789
- outputs=[result, seed, progress_bar]
790
- )#.then(
791
- # fn=lambda x, history: update_history(x, history),
792
- # inputs=[result, history_gallery],
793
- # outputs=history_gallery,
794
- #)
795
-
796
- app.queue()
797
- app.launch()