Update app.py
Browse files
app.py
CHANGED
|
@@ -19,39 +19,6 @@ import pandas as pd
|
|
| 19 |
# Disable tokenizer parallelism
|
| 20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
|
| 22 |
-
# Initialize the CLIP tokenizer and model
|
| 23 |
-
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
| 24 |
-
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
| 25 |
-
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
| 26 |
-
|
| 27 |
-
# Initialize the Longformer tokenizer and model
|
| 28 |
-
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
| 29 |
-
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
| 30 |
-
|
| 31 |
-
# Example usage
|
| 32 |
-
input_text = "Your long prompt goes here..."
|
| 33 |
-
inputs = preprocess_prompt(input_text)
|
| 34 |
-
|
| 35 |
-
def preprocess_prompt(input_text, max_clip_tokens=77):
|
| 36 |
-
"""
|
| 37 |
-
Preprocess the input prompt based on its length:
|
| 38 |
-
- If the prompt is <= max_clip_tokens, summarize it.
|
| 39 |
-
- If the prompt is > max_clip_tokens, split and process it.
|
| 40 |
-
"""
|
| 41 |
-
# Tokenize the prompt to determine its token length
|
| 42 |
-
tokens = clip_processor.tokenizer(input_text, return_tensors="pt")["input_ids"][0]
|
| 43 |
-
token_count = len(tokens)
|
| 44 |
-
|
| 45 |
-
if token_count <= max_clip_tokens:
|
| 46 |
-
# Use summarization for shorter prompts
|
| 47 |
-
print("Using summarization (Option 5) as the prompt is short.")
|
| 48 |
-
return process_summarized_input(input_text)
|
| 49 |
-
else:
|
| 50 |
-
# Use split-and-process for longer prompts
|
| 51 |
-
print("Using chunking (Option 3) as the prompt exceeds 77 tokens.")
|
| 52 |
-
return process_clip_chunks(input_text)
|
| 53 |
-
|
| 54 |
-
|
| 55 |
# Summarization Function (Option 5)
|
| 56 |
def summarize_prompt(input_text, max_length=77):
|
| 57 |
"""
|
|
@@ -62,7 +29,6 @@ def summarize_prompt(input_text, max_length=77):
|
|
| 62 |
print(f"Summarized prompt: {summarized_text}")
|
| 63 |
return summarized_text
|
| 64 |
|
| 65 |
-
|
| 66 |
def process_summarized_input(input_text):
|
| 67 |
"""
|
| 68 |
Prepares summarized text for CLIP processing.
|
|
@@ -71,7 +37,6 @@ def process_summarized_input(input_text):
|
|
| 71 |
inputs = clip_processor(text=summarized_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
| 72 |
return inputs
|
| 73 |
|
| 74 |
-
|
| 75 |
def split_prompt_with_overlap(prompt, chunk_size=77, overlap=10):
|
| 76 |
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
| 77 |
chunks = [
|
|
@@ -79,9 +44,12 @@ def split_prompt_with_overlap(prompt, chunk_size=77, overlap=10):
|
|
| 79 |
for i in range(0, len(tokens), chunk_size - overlap)
|
| 80 |
]
|
| 81 |
return chunks
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
def process_clip_chunks(input_text):
|
| 87 |
"""
|
|
@@ -96,6 +64,38 @@ def process_clip_chunks(input_text):
|
|
| 96 |
processed_chunks.append(inputs)
|
| 97 |
return processed_chunks # Return processed chunks for downstream usage
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
# Load prompts for randomization
|
| 100 |
df = pd.read_csv('prompts.csv', header=None)
|
| 101 |
prompt_values = df.values.flatten()
|
|
|
|
| 19 |
# Disable tokenizer parallelism
|
| 20 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Summarization Function (Option 5)
|
| 23 |
def summarize_prompt(input_text, max_length=77):
|
| 24 |
"""
|
|
|
|
| 29 |
print(f"Summarized prompt: {summarized_text}")
|
| 30 |
return summarized_text
|
| 31 |
|
|
|
|
| 32 |
def process_summarized_input(input_text):
|
| 33 |
"""
|
| 34 |
Prepares summarized text for CLIP processing.
|
|
|
|
| 37 |
inputs = clip_processor(text=summarized_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
| 38 |
return inputs
|
| 39 |
|
|
|
|
| 40 |
def split_prompt_with_overlap(prompt, chunk_size=77, overlap=10):
|
| 41 |
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
| 42 |
chunks = [
|
|
|
|
| 44 |
for i in range(0, len(tokens), chunk_size - overlap)
|
| 45 |
]
|
| 46 |
return chunks
|
| 47 |
+
|
| 48 |
+
def split_prompt(prompt, chunk_size=77):
|
| 49 |
+
"""Splits a long prompt into chunks of the specified token size."""
|
| 50 |
+
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
| 51 |
+
chunks = [tokens[i:i + chunk_size] for i in range(0, len(tokens), chunk_size)]
|
| 52 |
+
return chunks
|
| 53 |
|
| 54 |
def process_clip_chunks(input_text):
|
| 55 |
"""
|
|
|
|
| 64 |
processed_chunks.append(inputs)
|
| 65 |
return processed_chunks # Return processed chunks for downstream usage
|
| 66 |
|
| 67 |
+
def preprocess_prompt(input_text, max_clip_tokens=77):
|
| 68 |
+
"""
|
| 69 |
+
Preprocess the input prompt based on its length:
|
| 70 |
+
- If the prompt is <= max_clip_tokens, summarize it.
|
| 71 |
+
- If the prompt is > max_clip_tokens, split and process it.
|
| 72 |
+
"""
|
| 73 |
+
# Tokenize the prompt to determine its token length
|
| 74 |
+
tokens = clip_processor.tokenizer(input_text, return_tensors="pt")["input_ids"][0]
|
| 75 |
+
token_count = len(tokens)
|
| 76 |
+
|
| 77 |
+
if token_count <= max_clip_tokens:
|
| 78 |
+
# Use summarization for shorter prompts
|
| 79 |
+
print("Using summarization (Option 5) as the prompt is short.")
|
| 80 |
+
return process_summarized_input(input_text)
|
| 81 |
+
else:
|
| 82 |
+
# Use split-and-process for longer prompts
|
| 83 |
+
print("Using chunking (Option 3) as the prompt exceeds 77 tokens.")
|
| 84 |
+
return process_clip_chunks(input_text)
|
| 85 |
+
|
| 86 |
+
# Initialize the CLIP tokenizer and model
|
| 87 |
+
clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch16")
|
| 88 |
+
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
| 89 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
| 90 |
+
|
| 91 |
+
# Initialize the Longformer tokenizer and model
|
| 92 |
+
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
| 93 |
+
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
| 94 |
+
|
| 95 |
+
# Example usage
|
| 96 |
+
input_text = "Your long prompt goes here..."
|
| 97 |
+
inputs = preprocess_prompt(input_text)
|
| 98 |
+
|
| 99 |
# Load prompts for randomization
|
| 100 |
df = pd.read_csv('prompts.csv', header=None)
|
| 101 |
prompt_values = df.values.flatten()
|