Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
from diffusers import FluxKontextPipeline
|
10 |
+
from diffusers.utils import load_image
|
11 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
|
12 |
+
from safetensors.torch import load_file
|
13 |
+
import requests
|
14 |
+
import re
|
15 |
+
|
16 |
+
# Load Kontext model
|
17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
18 |
+
|
19 |
+
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
|
20 |
+
|
21 |
+
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
|
22 |
+
|
23 |
+
with open("flux_loras.json", "r") as file:
|
24 |
+
data = json.load(file)
|
25 |
+
flux_loras_raw = [
|
26 |
+
{
|
27 |
+
"image": item["image"],
|
28 |
+
"title": item["title"],
|
29 |
+
"repo": item["repo"],
|
30 |
+
"trigger_word": item.get("trigger_word", ""),
|
31 |
+
"trigger_position": item.get("trigger_position", "prepend"),
|
32 |
+
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
|
33 |
+
}
|
34 |
+
for item in data
|
35 |
+
]
|
36 |
+
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
|
37 |
+
# Global variables for LoRA management
|
38 |
+
current_lora = None
|
39 |
+
lora_cache = {}
|
40 |
+
|
41 |
+
def load_lora_weights(repo_id, weights_filename):
|
42 |
+
"""Load LoRA weights from HuggingFace"""
|
43 |
+
try:
|
44 |
+
if repo_id not in lora_cache:
|
45 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
46 |
+
lora_cache[repo_id] = lora_path
|
47 |
+
return lora_cache[repo_id]
|
48 |
+
except Exception as e:
|
49 |
+
print(f"Error loading LoRA from {repo_id}: {e}")
|
50 |
+
return None
|
51 |
+
|
52 |
+
def update_selection(selected_state: gr.SelectData, flux_loras):
|
53 |
+
"""Update UI when a LoRA is selected"""
|
54 |
+
if selected_state.index >= len(flux_loras):
|
55 |
+
return "### No LoRA selected", gr.update(), None
|
56 |
+
|
57 |
+
lora_repo = flux_loras[selected_state.index]["repo"]
|
58 |
+
trigger_word = flux_loras[selected_state.index]["trigger_word"]
|
59 |
+
|
60 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
|
61 |
+
new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
|
62 |
+
|
63 |
+
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index
|
64 |
+
|
65 |
+
def get_huggingface_lora(link):
|
66 |
+
"""Download LoRA from HuggingFace link"""
|
67 |
+
split_link = link.split("/")
|
68 |
+
if len(split_link) == 2:
|
69 |
+
try:
|
70 |
+
model_card = ModelCard.load(link)
|
71 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
72 |
+
|
73 |
+
fs = HfFileSystem()
|
74 |
+
list_of_files = fs.ls(link, detail=False)
|
75 |
+
safetensors_file = None
|
76 |
+
|
77 |
+
for file in list_of_files:
|
78 |
+
if file.endswith(".safetensors") and "lora" in file.lower():
|
79 |
+
safetensors_file = file.split("/")[-1]
|
80 |
+
break
|
81 |
+
|
82 |
+
if not safetensors_file:
|
83 |
+
safetensors_file = "pytorch_lora_weights.safetensors"
|
84 |
+
|
85 |
+
return split_link[1], safetensors_file, trigger_word
|
86 |
+
except Exception as e:
|
87 |
+
raise Exception(f"Error loading LoRA: {e}")
|
88 |
+
else:
|
89 |
+
raise Exception("Invalid HuggingFace repository format")
|
90 |
+
|
91 |
+
def load_custom_lora(link):
|
92 |
+
"""Load custom LoRA from user input"""
|
93 |
+
if not link:
|
94 |
+
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None
|
95 |
+
|
96 |
+
try:
|
97 |
+
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
|
98 |
+
|
99 |
+
card = f'''
|
100 |
+
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
|
101 |
+
<span><strong>Loaded custom LoRA:</strong></span>
|
102 |
+
<div style="margin-top: 8px;">
|
103 |
+
<h4>{repo_name}</h4>
|
104 |
+
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
|
105 |
+
</div>
|
106 |
+
</div>
|
107 |
+
'''
|
108 |
+
|
109 |
+
custom_lora_data = {
|
110 |
+
"repo": link,
|
111 |
+
"weights": weights_file,
|
112 |
+
"trigger_word": trigger_word
|
113 |
+
}
|
114 |
+
|
115 |
+
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None
|
119 |
+
|
120 |
+
def remove_custom_lora():
|
121 |
+
"""Remove custom LoRA"""
|
122 |
+
return "", gr.update(visible=False), gr.update(visible=False), None, None
|
123 |
+
|
124 |
+
def classify_gallery(flux_loras):
|
125 |
+
"""Sort gallery by likes"""
|
126 |
+
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
127 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
128 |
+
|
129 |
+
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
130 |
+
"""Wrapper function to handle state serialization"""
|
131 |
+
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)
|
132 |
+
|
133 |
+
@spaces.GPU
|
134 |
+
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
135 |
+
"""Generate image with selected LoRA"""
|
136 |
+
global current_lora, pipe
|
137 |
+
|
138 |
+
if randomize_seed:
|
139 |
+
seed = random.randint(0, MAX_SEED)
|
140 |
+
|
141 |
+
# Determine which LoRA to use
|
142 |
+
lora_to_use = None
|
143 |
+
if custom_lora:
|
144 |
+
lora_to_use = custom_lora
|
145 |
+
elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
|
146 |
+
lora_to_use = flux_loras[selected_index]
|
147 |
+
print(f"Loaded {len(flux_loras)} LoRAs from JSON")
|
148 |
+
# Load LoRA if needed
|
149 |
+
if lora_to_use and lora_to_use != current_lora:
|
150 |
+
try:
|
151 |
+
# Unload current LoRA
|
152 |
+
if current_lora:
|
153 |
+
pipe.unload_lora_weights()
|
154 |
+
|
155 |
+
# Load new LoRA
|
156 |
+
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
|
157 |
+
if lora_path:
|
158 |
+
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
159 |
+
pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
|
160 |
+
print(f"loaded: {lora_path} with scale {lora_scale}")
|
161 |
+
current_lora = lora_to_use
|
162 |
+
|
163 |
+
except Exception as e:
|
164 |
+
print(f"Error loading LoRA: {e}")
|
165 |
+
# Continue without LoRA
|
166 |
+
else:
|
167 |
+
print(f"using already loaded lora: {lora_to_use}")
|
168 |
+
|
169 |
+
input_image = input_image.convert("RGB")
|
170 |
+
# Add trigger word to prompt
|
171 |
+
trigger_word = lora_to_use["trigger_word"]
|
172 |
+
if trigger_word == ", How2Draw":
|
173 |
+
prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
|
174 |
+
elif trigger_word == ", video game screenshot in the style of THSMS":
|
175 |
+
prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
|
176 |
+
else:
|
177 |
+
prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
|
178 |
+
|
179 |
+
try:
|
180 |
+
image = pipe(
|
181 |
+
image=input_image,
|
182 |
+
prompt=prompt,
|
183 |
+
guidance_scale=guidance_scale,
|
184 |
+
generator=torch.Generator().manual_seed(seed),
|
185 |
+
).images[0]
|
186 |
+
|
187 |
+
return image, seed, gr.update(visible=True)
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Error during inference: {e}")
|
191 |
+
return None, seed, gr.update(visible=False)
|
192 |
+
|
193 |
+
# CSS styling with beautiful gradient pastel design
|
194 |
+
css = """
|
195 |
+
/* Global background and container styling */
|
196 |
+
.gradio-container {
|
197 |
+
background: linear-gradient(135deg, #ffeef8 0%, #e6f3ff 25%, #fff4e6 50%, #f0e6ff 75%, #e6fff9 100%);
|
198 |
+
font-family: 'Inter', sans-serif;
|
199 |
+
}
|
200 |
+
|
201 |
+
/* Main app container */
|
202 |
+
#main_app {
|
203 |
+
display: flex;
|
204 |
+
gap: 24px;
|
205 |
+
padding: 20px;
|
206 |
+
background: rgba(255, 255, 255, 0.85);
|
207 |
+
backdrop-filter: blur(20px);
|
208 |
+
border-radius: 24px;
|
209 |
+
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
|
210 |
+
}
|
211 |
+
|
212 |
+
/* Box column styling */
|
213 |
+
#box_column {
|
214 |
+
min-width: 400px;
|
215 |
+
}
|
216 |
+
|
217 |
+
/* Gallery box with glassmorphism */
|
218 |
+
#gallery_box {
|
219 |
+
background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(240, 248, 255, 0.9) 100%);
|
220 |
+
border-radius: 20px;
|
221 |
+
padding: 20px;
|
222 |
+
box-shadow: 0 8px 32px rgba(135, 206, 250, 0.2);
|
223 |
+
border: 1px solid rgba(255, 255, 255, 0.8);
|
224 |
+
}
|
225 |
+
|
226 |
+
/* Input image styling */
|
227 |
+
.image-container {
|
228 |
+
border-radius: 16px;
|
229 |
+
overflow: hidden;
|
230 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
|
231 |
+
}
|
232 |
+
|
233 |
+
/* Gallery styling */
|
234 |
+
#gallery {
|
235 |
+
overflow-y: scroll !important;
|
236 |
+
max-height: 400px;
|
237 |
+
padding: 12px;
|
238 |
+
background: rgba(255, 255, 255, 0.5);
|
239 |
+
border-radius: 16px;
|
240 |
+
scrollbar-width: thin;
|
241 |
+
scrollbar-color: #ddd6fe #f5f3ff;
|
242 |
+
}
|
243 |
+
|
244 |
+
#gallery::-webkit-scrollbar {
|
245 |
+
width: 8px;
|
246 |
+
}
|
247 |
+
|
248 |
+
#gallery::-webkit-scrollbar-track {
|
249 |
+
background: #f5f3ff;
|
250 |
+
border-radius: 10px;
|
251 |
+
}
|
252 |
+
|
253 |
+
#gallery::-webkit-scrollbar-thumb {
|
254 |
+
background: linear-gradient(180deg, #c7d2fe 0%, #ddd6fe 100%);
|
255 |
+
border-radius: 10px;
|
256 |
+
}
|
257 |
+
|
258 |
+
/* Selected LoRA text */
|
259 |
+
#selected_lora {
|
260 |
+
background: linear-gradient(135deg, #818cf8 0%, #a78bfa 100%);
|
261 |
+
-webkit-background-clip: text;
|
262 |
+
-webkit-text-fill-color: transparent;
|
263 |
+
background-clip: text;
|
264 |
+
font-weight: 700;
|
265 |
+
font-size: 18px;
|
266 |
+
text-align: center;
|
267 |
+
padding: 12px;
|
268 |
+
margin-bottom: 16px;
|
269 |
+
}
|
270 |
+
|
271 |
+
/* Prompt input field */
|
272 |
+
#prompt {
|
273 |
+
flex-grow: 1;
|
274 |
+
border: 2px solid transparent;
|
275 |
+
background: linear-gradient(white, white) padding-box,
|
276 |
+
linear-gradient(135deg, #a5b4fc 0%, #e9d5ff 100%) border-box;
|
277 |
+
border-radius: 12px;
|
278 |
+
padding: 12px 16px;
|
279 |
+
font-size: 16px;
|
280 |
+
transition: all 0.3s ease;
|
281 |
+
}
|
282 |
+
|
283 |
+
#prompt:focus {
|
284 |
+
box-shadow: 0 0 0 4px rgba(165, 180, 252, 0.25);
|
285 |
+
}
|
286 |
+
|
287 |
+
/* Run button with animated gradient */
|
288 |
+
#run_button {
|
289 |
+
background: linear-gradient(135deg, #a78bfa 0%, #818cf8 25%, #60a5fa 50%, #34d399 75%, #fbbf24 100%);
|
290 |
+
background-size: 200% 200%;
|
291 |
+
animation: gradient-shift 3s ease infinite;
|
292 |
+
color: white;
|
293 |
+
border: none;
|
294 |
+
padding: 12px 32px;
|
295 |
+
border-radius: 12px;
|
296 |
+
font-weight: 600;
|
297 |
+
font-size: 16px;
|
298 |
+
cursor: pointer;
|
299 |
+
transition: all 0.3s ease;
|
300 |
+
box-shadow: 0 4px 20px rgba(167, 139, 250, 0.4);
|
301 |
+
}
|
302 |
+
|
303 |
+
#run_button:hover {
|
304 |
+
transform: translateY(-2px);
|
305 |
+
box-shadow: 0 6px 30px rgba(167, 139, 250, 0.6);
|
306 |
+
}
|
307 |
+
|
308 |
+
@keyframes gradient-shift {
|
309 |
+
0% { background-position: 0% 50%; }
|
310 |
+
50% { background-position: 100% 50%; }
|
311 |
+
100% { background-position: 0% 50%; }
|
312 |
+
}
|
313 |
+
|
314 |
+
/* Custom LoRA card */
|
315 |
+
.custom_lora_card {
|
316 |
+
background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
|
317 |
+
border: 1px solid #fcd34d;
|
318 |
+
border-radius: 12px;
|
319 |
+
padding: 16px;
|
320 |
+
margin: 12px 0;
|
321 |
+
box-shadow: 0 4px 12px rgba(251, 191, 36, 0.2);
|
322 |
+
}
|
323 |
+
|
324 |
+
/* Result image container */
|
325 |
+
.output-image {
|
326 |
+
border-radius: 16px;
|
327 |
+
overflow: hidden;
|
328 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.12);
|
329 |
+
margin-top: 20px;
|
330 |
+
}
|
331 |
+
|
332 |
+
/* Accordion styling */
|
333 |
+
.accordion {
|
334 |
+
background: rgba(249, 250, 251, 0.9);
|
335 |
+
border-radius: 12px;
|
336 |
+
border: 1px solid rgba(229, 231, 235, 0.8);
|
337 |
+
margin-top: 16px;
|
338 |
+
}
|
339 |
+
|
340 |
+
/* Slider styling */
|
341 |
+
.slider-container {
|
342 |
+
padding: 8px 0;
|
343 |
+
}
|
344 |
+
|
345 |
+
input[type="range"] {
|
346 |
+
background: linear-gradient(to right, #e0e7ff 0%, #c7d2fe 100%);
|
347 |
+
border-radius: 8px;
|
348 |
+
height: 6px;
|
349 |
+
}
|
350 |
+
|
351 |
+
/* Reuse button */
|
352 |
+
button:not(#run_button) {
|
353 |
+
background: linear-gradient(135deg, #f0abfc 0%, #c084fc 100%);
|
354 |
+
color: white;
|
355 |
+
border: none;
|
356 |
+
padding: 8px 20px;
|
357 |
+
border-radius: 8px;
|
358 |
+
font-weight: 500;
|
359 |
+
cursor: pointer;
|
360 |
+
transition: all 0.3s ease;
|
361 |
+
}
|
362 |
+
|
363 |
+
button:not(#run_button):hover {
|
364 |
+
transform: translateY(-1px);
|
365 |
+
box-shadow: 0 4px 16px rgba(192, 132, 252, 0.4);
|
366 |
+
}
|
367 |
+
|
368 |
+
/* Title styling */
|
369 |
+
h1 {
|
370 |
+
background: linear-gradient(135deg, #6366f1 0%, #a855f7 25%, #ec4899 50%, #f43f5e 75%, #f59e0b 100%);
|
371 |
+
-webkit-background-clip: text;
|
372 |
+
-webkit-text-fill-color: transparent;
|
373 |
+
background-clip: text;
|
374 |
+
text-align: center;
|
375 |
+
font-size: 3.5rem;
|
376 |
+
font-weight: 800;
|
377 |
+
margin-bottom: 8px;
|
378 |
+
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.1);
|
379 |
+
}
|
380 |
+
|
381 |
+
h1 small {
|
382 |
+
display: block;
|
383 |
+
background: linear-gradient(135deg, #94a3b8 0%, #64748b 100%);
|
384 |
+
-webkit-background-clip: text;
|
385 |
+
-webkit-text-fill-color: transparent;
|
386 |
+
background-clip: text;
|
387 |
+
font-size: 1rem;
|
388 |
+
font-weight: 500;
|
389 |
+
margin-top: 8px;
|
390 |
+
}
|
391 |
+
|
392 |
+
/* Checkbox styling */
|
393 |
+
input[type="checkbox"] {
|
394 |
+
accent-color: #8b5cf6;
|
395 |
+
}
|
396 |
+
|
397 |
+
/* Label styling */
|
398 |
+
label {
|
399 |
+
color: #4b5563;
|
400 |
+
font-weight: 500;
|
401 |
+
}
|
402 |
+
|
403 |
+
/* Group containers */
|
404 |
+
.gr-group {
|
405 |
+
background: rgba(255, 255, 255, 0.7);
|
406 |
+
border-radius: 16px;
|
407 |
+
padding: 20px;
|
408 |
+
border: 1px solid rgba(255, 255, 255, 0.9);
|
409 |
+
box-shadow: 0 4px 16px rgba(0, 0, 0, 0.05);
|
410 |
+
}
|
411 |
+
"""
|
412 |
+
|
413 |
+
# Create Gradio interface
|
414 |
+
with gr.Blocks(css=css) as demo:
|
415 |
+
gr_flux_loras = gr.State(value=flux_loras_raw)
|
416 |
+
|
417 |
+
title = gr.HTML(
|
418 |
+
"""<h1>✨ Flux-Kontext FaceLORA
|
419 |
+
<small>Transform your portraits with AI-powered style transfer 🎨</small></h1>""",
|
420 |
+
)
|
421 |
+
|
422 |
+
selected_state = gr.State(value=None)
|
423 |
+
custom_loaded_lora = gr.State(value=None)
|
424 |
+
|
425 |
+
with gr.Row(elem_id="main_app"):
|
426 |
+
with gr.Column(scale=4, elem_id="box_column"):
|
427 |
+
with gr.Group(elem_id="gallery_box"):
|
428 |
+
input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
|
429 |
+
|
430 |
+
gallery = gr.Gallery(
|
431 |
+
label="Pick a LoRA",
|
432 |
+
allow_preview=False,
|
433 |
+
columns=3,
|
434 |
+
elem_id="gallery",
|
435 |
+
show_share_button=False,
|
436 |
+
height=400
|
437 |
+
)
|
438 |
+
|
439 |
+
custom_model = gr.Textbox(
|
440 |
+
label="Or enter a custom HuggingFace FLUX LoRA",
|
441 |
+
placeholder="e.g., username/lora-name",
|
442 |
+
visible=False
|
443 |
+
)
|
444 |
+
custom_model_card = gr.HTML(visible=False)
|
445 |
+
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
446 |
+
|
447 |
+
with gr.Column(scale=5):
|
448 |
+
with gr.Row():
|
449 |
+
prompt = gr.Textbox(
|
450 |
+
label="Editing Prompt",
|
451 |
+
show_label=False,
|
452 |
+
lines=1,
|
453 |
+
max_lines=1,
|
454 |
+
placeholder="optional description, e.g. 'a man with glasses and a beard'",
|
455 |
+
elem_id="prompt"
|
456 |
+
)
|
457 |
+
run_button = gr.Button("Generate ✨", elem_id="run_button")
|
458 |
+
|
459 |
+
result = gr.Image(label="Generated Image", interactive=False)
|
460 |
+
reuse_button = gr.Button("🔄 Reuse this image", visible=False)
|
461 |
+
|
462 |
+
with gr.Accordion("Advanced Settings", open=False):
|
463 |
+
lora_scale = gr.Slider(
|
464 |
+
label="LoRA Scale",
|
465 |
+
minimum=0,
|
466 |
+
maximum=2,
|
467 |
+
step=0.1,
|
468 |
+
value=1.5,
|
469 |
+
info="Controls the strength of the LoRA effect"
|
470 |
+
)
|
471 |
+
seed = gr.Slider(
|
472 |
+
label="Seed",
|
473 |
+
minimum=0,
|
474 |
+
maximum=MAX_SEED,
|
475 |
+
step=1,
|
476 |
+
value=0,
|
477 |
+
)
|
478 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
479 |
+
guidance_scale = gr.Slider(
|
480 |
+
label="Guidance Scale",
|
481 |
+
minimum=1,
|
482 |
+
maximum=10,
|
483 |
+
step=0.1,
|
484 |
+
value=2.5,
|
485 |
+
)
|
486 |
+
|
487 |
+
prompt_title = gr.Markdown(
|
488 |
+
value="### Click on a LoRA in the gallery to select it",
|
489 |
+
visible=True,
|
490 |
+
elem_id="selected_lora",
|
491 |
+
)
|
492 |
+
|
493 |
+
# Event handlers
|
494 |
+
custom_model.input(
|
495 |
+
fn=load_custom_lora,
|
496 |
+
inputs=[custom_model],
|
497 |
+
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
|
498 |
+
)
|
499 |
+
|
500 |
+
custom_model_button.click(
|
501 |
+
fn=remove_custom_lora,
|
502 |
+
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
|
503 |
+
)
|
504 |
+
|
505 |
+
gallery.select(
|
506 |
+
fn=update_selection,
|
507 |
+
inputs=[gr_flux_loras],
|
508 |
+
outputs=[prompt_title, prompt, selected_state],
|
509 |
+
show_progress=False
|
510 |
+
)
|
511 |
+
|
512 |
+
gr.on(
|
513 |
+
triggers=[run_button.click, prompt.submit],
|
514 |
+
fn=infer_with_lora_wrapper,
|
515 |
+
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
|
516 |
+
outputs=[result, seed, reuse_button]
|
517 |
+
)
|
518 |
+
|
519 |
+
reuse_button.click(
|
520 |
+
fn=lambda image: image,
|
521 |
+
inputs=[result],
|
522 |
+
outputs=[input_image]
|
523 |
+
)
|
524 |
+
|
525 |
+
# Initialize gallery
|
526 |
+
demo.load(
|
527 |
+
fn=classify_gallery,
|
528 |
+
inputs=[gr_flux_loras],
|
529 |
+
outputs=[gallery, gr_flux_loras]
|
530 |
+
)
|
531 |
+
|
532 |
+
demo.queue(default_concurrency_limit=None)
|
533 |
+
demo.launch()
|