Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import os
|
|
8 |
from PIL import Image
|
9 |
from diffusers import FluxKontextPipeline
|
10 |
from diffusers.utils import load_image
|
11 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
|
12 |
from safetensors.torch import load_file
|
13 |
import requests
|
14 |
import re
|
@@ -37,7 +37,50 @@ try:
|
|
37 |
print(f"Successfully loaded {len(flux_loras_raw)} LoRAs from JSON")
|
38 |
except Exception as e:
|
39 |
print(f"Error loading flux_loras.json: {e}")
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Global variables for LoRA management
|
42 |
current_lora = None
|
43 |
lora_cache = {}
|
@@ -45,10 +88,45 @@ lora_cache = {}
|
|
45 |
def load_lora_weights(repo_id, weights_filename):
|
46 |
"""Load LoRA weights from HuggingFace"""
|
47 |
try:
|
48 |
-
|
|
|
49 |
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
except Exception as e:
|
53 |
print(f"Error loading LoRA from {repo_id}: {e}")
|
54 |
return None
|
@@ -74,21 +152,36 @@ def get_huggingface_lora(link):
|
|
74 |
model_card = ModelCard.load(link)
|
75 |
trigger_word = model_card.data.get("instance_prompt", "")
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
|
|
89 |
return split_link[1], safetensors_file, trigger_word
|
|
|
90 |
except Exception as e:
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
else:
|
93 |
raise Exception("Invalid HuggingFace repository format")
|
94 |
|
@@ -130,12 +223,27 @@ def classify_gallery(flux_loras):
|
|
130 |
try:
|
131 |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
132 |
gallery_items = []
|
|
|
133 |
for item in sorted_gallery:
|
134 |
if "image" in item and "title" in item:
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
return gallery_items, sorted_gallery
|
137 |
except Exception as e:
|
138 |
-
print(f"Error
|
139 |
return [], []
|
140 |
|
141 |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
@@ -477,7 +585,7 @@ with gr.Blocks(css=css) as demo:
|
|
477 |
custom_model = gr.Textbox(
|
478 |
label="Or enter a custom HuggingFace FLUX LoRA",
|
479 |
placeholder="e.g., username/lora-name",
|
480 |
-
visible=
|
481 |
)
|
482 |
custom_model_card = gr.HTML(visible=False)
|
483 |
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
8 |
from PIL import Image
|
9 |
from diffusers import FluxKontextPipeline
|
10 |
from diffusers.utils import load_image
|
11 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, list_repo_files
|
12 |
from safetensors.torch import load_file
|
13 |
import requests
|
14 |
import re
|
|
|
37 |
print(f"Successfully loaded {len(flux_loras_raw)} LoRAs from JSON")
|
38 |
except Exception as e:
|
39 |
print(f"Error loading flux_loras.json: {e}")
|
40 |
+
print("Using sample LoRA data instead...")
|
41 |
+
# Sample LoRA data with working repositories
|
42 |
+
flux_loras_raw = [
|
43 |
+
{
|
44 |
+
"image": "https://huggingface.co/alvdansen/flux-koda/resolve/main/images/photo-1586902197503-e71026292412.jpeg",
|
45 |
+
"title": "Flux Koda",
|
46 |
+
"repo": "alvdansen/flux-koda",
|
47 |
+
"trigger_word": "flmft style",
|
48 |
+
"weights": "flux_lora.safetensors",
|
49 |
+
"likes": 100
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"image": "https://huggingface.co/multimodalart/flux-tarot-v1/resolve/main/images/e5f2761e5a474e52ab11b1c9246c9a30.png",
|
53 |
+
"title": "Tarot Cards",
|
54 |
+
"repo": "multimodalart/flux-tarot-v1",
|
55 |
+
"trigger_word": "in the style of TOK a trtcrd tarot style",
|
56 |
+
"weights": "flux_tarot_v1_lora.safetensors",
|
57 |
+
"likes": 90
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"image": "https://huggingface.co/Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style/resolve/main/d13591878de740648a8f29b836e16ff2.jpeg",
|
61 |
+
"title": "Paper Cutout",
|
62 |
+
"repo": "Norod78/Flux_1_Dev_LoRA_Paper-Cutout-Style",
|
63 |
+
"trigger_word": "Paper Cutout Style",
|
64 |
+
"weights": "Flux_1_Dev_LoRA_Paper-Cutout-Style.safetensors",
|
65 |
+
"likes": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"image": "https://huggingface.co/alvdansen/frosting_lane_flux/resolve/main/images/content%20-%202024-08-11T010011.238.jpeg",
|
69 |
+
"title": "Frosting Lane",
|
70 |
+
"repo": "alvdansen/frosting_lane_flux",
|
71 |
+
"trigger_word": "frstingln illustration",
|
72 |
+
"weights": "flux_lora_frosting_lane_flux_000002500.safetensors",
|
73 |
+
"likes": 70
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"image": "https://huggingface.co/davisbro/flux-watercolor/resolve/main/images/wc2.png",
|
77 |
+
"title": "Watercolor",
|
78 |
+
"repo": "davisbro/flux-watercolor",
|
79 |
+
"trigger_word": "watercolor style",
|
80 |
+
"weights": "flux_watercolor.safetensors",
|
81 |
+
"likes": 60
|
82 |
+
}
|
83 |
+
]
|
84 |
# Global variables for LoRA management
|
85 |
current_lora = None
|
86 |
lora_cache = {}
|
|
|
88 |
def load_lora_weights(repo_id, weights_filename):
|
89 |
"""Load LoRA weights from HuggingFace"""
|
90 |
try:
|
91 |
+
# First try with the specified filename
|
92 |
+
try:
|
93 |
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
94 |
+
if repo_id not in lora_cache:
|
95 |
+
lora_cache[repo_id] = lora_path
|
96 |
+
return lora_path
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Failed to load {weights_filename}, trying to find alternative LoRA files...")
|
99 |
+
|
100 |
+
# If the specified file doesn't exist, try to find any .safetensors file
|
101 |
+
from huggingface_hub import list_repo_files
|
102 |
+
try:
|
103 |
+
files = list_repo_files(repo_id)
|
104 |
+
safetensors_files = [f for f in files if f.endswith(('.safetensors', '.bin')) and 'lora' in f.lower()]
|
105 |
+
|
106 |
+
if not safetensors_files:
|
107 |
+
# Try without 'lora' in filename
|
108 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
109 |
+
|
110 |
+
if safetensors_files:
|
111 |
+
# Try the first available file
|
112 |
+
for file in safetensors_files:
|
113 |
+
try:
|
114 |
+
print(f"Trying alternative file: {file}")
|
115 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=file)
|
116 |
+
if repo_id not in lora_cache:
|
117 |
+
lora_cache[repo_id] = lora_path
|
118 |
+
print(f"Successfully loaded alternative LoRA file: {file}")
|
119 |
+
return lora_path
|
120 |
+
except:
|
121 |
+
continue
|
122 |
+
|
123 |
+
print(f"No suitable LoRA files found in {repo_id}")
|
124 |
+
return None
|
125 |
+
|
126 |
+
except Exception as list_error:
|
127 |
+
print(f"Error listing files in repo {repo_id}: {list_error}")
|
128 |
+
return None
|
129 |
+
|
130 |
except Exception as e:
|
131 |
print(f"Error loading LoRA from {repo_id}: {e}")
|
132 |
return None
|
|
|
152 |
model_card = ModelCard.load(link)
|
153 |
trigger_word = model_card.data.get("instance_prompt", "")
|
154 |
|
155 |
+
# Try to find the correct safetensors file
|
156 |
+
files = list_repo_files(link)
|
157 |
+
safetensors_files = [f for f in files if f.endswith('.safetensors')]
|
158 |
|
159 |
+
# Prioritize files with 'lora' in the name
|
160 |
+
lora_files = [f for f in safetensors_files if 'lora' in f.lower()]
|
161 |
+
if lora_files:
|
162 |
+
safetensors_file = lora_files[0]
|
163 |
+
elif safetensors_files:
|
164 |
+
safetensors_file = safetensors_files[0]
|
165 |
+
else:
|
166 |
+
# Try .bin files as fallback
|
167 |
+
bin_files = [f for f in files if f.endswith('.bin') and 'lora' in f.lower()]
|
168 |
+
if bin_files:
|
169 |
+
safetensors_file = bin_files[0]
|
170 |
+
else:
|
171 |
+
safetensors_file = "pytorch_lora_weights.safetensors" # Default fallback
|
172 |
|
173 |
+
print(f"Found LoRA file: {safetensors_file} in {link}")
|
174 |
return split_link[1], safetensors_file, trigger_word
|
175 |
+
|
176 |
except Exception as e:
|
177 |
+
print(f"Error in get_huggingface_lora: {e}")
|
178 |
+
# Try basic detection
|
179 |
+
try:
|
180 |
+
files = list_repo_files(link)
|
181 |
+
safetensors_file = next((f for f in files if f.endswith('.safetensors')), "pytorch_lora_weights.safetensors")
|
182 |
+
return split_link[1], safetensors_file, ""
|
183 |
+
except:
|
184 |
+
raise Exception(f"Error loading LoRA: {e}")
|
185 |
else:
|
186 |
raise Exception("Invalid HuggingFace repository format")
|
187 |
|
|
|
223 |
try:
|
224 |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
225 |
gallery_items = []
|
226 |
+
|
227 |
for item in sorted_gallery:
|
228 |
if "image" in item and "title" in item:
|
229 |
+
image_url = item["image"]
|
230 |
+
title = item["title"]
|
231 |
+
|
232 |
+
# If image is a local file path that might not exist, use a placeholder URL
|
233 |
+
if isinstance(image_url, str) and (image_url.startswith("/home/") or image_url.startswith("samples/") or not image_url.startswith("http")):
|
234 |
+
print(f"Replacing local/invalid image path: {image_url}")
|
235 |
+
# Use a more reliable placeholder
|
236 |
+
image_url = f"https://via.placeholder.com/512x512/E0E7FF/818CF8?text={title.replace(' ', '+')}"
|
237 |
+
|
238 |
+
gallery_items.append((image_url, title))
|
239 |
+
|
240 |
+
if not gallery_items:
|
241 |
+
print("No gallery items found after filtering")
|
242 |
+
return [], sorted_gallery
|
243 |
+
|
244 |
return gallery_items, sorted_gallery
|
245 |
except Exception as e:
|
246 |
+
print(f"Error in classify_gallery: {e}")
|
247 |
return [], []
|
248 |
|
249 |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
|
|
585 |
custom_model = gr.Textbox(
|
586 |
label="Or enter a custom HuggingFace FLUX LoRA",
|
587 |
placeholder="e.g., username/lora-name",
|
588 |
+
visible=True
|
589 |
)
|
590 |
custom_model_card = gr.HTML(visible=False)
|
591 |
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|