import gradio as gr import numpy as np import random import torch from PIL import Image import os import sys import importlib.util import spaces # 중요: 패치 적용 - huggingface_hub에 cached_download 함수 추가 import huggingface_hub if not hasattr(huggingface_hub, "cached_download"): # 기존 hf_hub_download 함수를 cached_download로 별칭 추가 huggingface_hub.cached_download = huggingface_hub.hf_hub_download # 그 후 나머지 임포트 진행 from huggingface_hub import snapshot_download, hf_hub_download, model_info from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter import StableDiffusionXLPipeline from kolors.models.modeling_chatglm import ChatGLMModel from kolors.models.tokenization_chatglm import ChatGLMTokenizer from kolors.models.unet_2d_condition import UNet2DConditionModel from diffusers import AutoencoderKL, EulerDiscreteScheduler device = "cuda" root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ckpt_dir = f'{root_dir}/weights/Kolors' snapshot_download(repo_id="Kwai-Kolors/Kolors", local_dir=ckpt_dir) snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus", local_dir=f"{root_dir}/weights/Kolors-IP-Adapter-Plus") # Load models text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device) tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device) scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device) image_encoder = CLIPVisionModelWithProjection.from_pretrained( f'{root_dir}/weights/Kolors-IP-Adapter-Plus/image_encoder', ignore_mismatched_sizes=True ).to(dtype=torch.float16, device=device) ip_img_size = 336 clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size) pipe = StableDiffusionXLPipeline( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, image_encoder=image_encoder, feature_extractor=clip_image_processor, force_zeros_for_empty_prompt=False ).to(device) if hasattr(pipe.unet, 'encoder_hid_proj'): pipe.unet.text_encoder_hid_proj = pipe.unet.encoder_hid_proj pipe.load_ip_adapter(f'{root_dir}/weights/Kolors-IP-Adapter-Plus', subfolder="", weight_name=["ip_adapter_plus_general.bin"]) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # ---------------------------------------------- # infer 함수 (기존 로직 그대로 유지) # ---------------------------------------------- @spaces.GPU(duration=80) def infer( user_prompt, ip_adapter_image, ip_adapter_scale=0.5, negative_prompt="", seed=100, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=50, progress=gr.Progress(track_tqdm=True) ): # 숨겨진(기본/필수) 프롬프트 hidden_prompt = ( "Ghibli Studio style, Charming hand-drawn anime-style illustration" ) # 실제로 파이프라인에 전달할 최종 프롬프트 prompt = f"{hidden_prompt}, {user_prompt}" if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device="cuda").manual_seed(seed) pipe.to("cuda") image_encoder.to("cuda") pipe.image_encoder = image_encoder pipe.set_ip_adapter_scale([ip_adapter_scale]) image = pipe( prompt=prompt, ip_adapter_image=[ip_adapter_image], negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=1, generator=generator, ).images[0] return image, seed examples = [ [ "background alps", "gh0.webp", 0.5 ], [ "dancing", "gh5.jpg", 0.5 ], [ "smile", "gh2.jpg", 0.5 ], [ "3d style", "gh3.webp", 0.6 ], [ "with Pikachu", "gh4.jpg", 0.5 ], [ "Ghibli Studio style, Charming hand-drawn anime-style illustration", "gh7.jpg", 0.5 ], [ "Ghibli Studio style, Charming hand-drawn anime-style illustration", "gh1.jpg", 0.5 ], ] # -------------------------- # 개선된 UI를 위한 CSS # -------------------------- css = """ body { background: linear-gradient(135deg, #f5f7fa, #c3cfe2); font-family: 'Helvetica Neue', Arial, sans-serif; color: #333; margin: 0; padding: 0; } #col-container { margin: 0 auto !important; max-width: 720px; background: rgba(255,255,255,0.85); border-radius: 16px; padding: 2rem; box-shadow: 0 8px 24px rgba(0,0,0,0.1); } #header-title { text-align: center; font-size: 2rem; font-weight: bold; margin-bottom: 1rem; } #prompt-row { display: flex; gap: 0.5rem; align-items: center; margin-bottom: 1rem; } #prompt-text { flex: 1; } #result img { object-position: top; border-radius: 8px; } #result .image-container { height: 100%; } .gr-button { background-color: #2E8BFB !important; color: white !important; border: none !important; transition: background-color 0.2s ease; } .gr-button:hover { background-color: #186EDB !important; } .gr-slider input[type=range] { accent-color: #2E8BFB !important; } .gr-box { background-color: #fafafa !important; border: 1px solid #ddd !important; border-radius: 8px !important; padding: 1rem !important; } #advanced-settings { margin-top: 1rem; border-radius: 8px; } """ with gr.Blocks(theme="apriel", css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("
Ghibli Meme Studio
") gr.Markdown("
Community: https://discord.gg/openfreeai
") # 상단: 프롬프트 입력 + 실행 버튼 with gr.Row(elem_id="prompt-row"): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", elem_id="prompt-text", ) run_button = gr.Button("Run", elem_id="run-button") # 가운데: 이미지 입력과 슬라이더, 결과 이미지 with gr.Row(): with gr.Column(): ip_adapter_image = gr.Image(label="IP-Adapter Image", type="pil") ip_adapter_scale = gr.Slider( label="Image influence scale", info="Use 1 for creating variations", minimum=0.0, maximum=1.0, step=0.05, value=0.5, ) result = gr.Image(label="Result", elem_id="result") # 하단: 고급 설정(Accordion) with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): negative_prompt = gr.Text( label="Negative prompt", max_lines=2, placeholder=( "Copy(worst quality, low quality:1.4), bad anatomy, bad hands, text, error, " "missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, " "normal quality, jpeg artifacts, signature, watermark, username, blurry, " "artist name, (deformed iris, deformed pupils:1.2), (semi-realistic, cgi, " "3d, render:1.1), amateur, (poorly drawn hands, poorly drawn face:1.2)" ), ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=5.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=100, step=1, value=50, ) # 예시들 gr.Examples( examples=examples, fn=infer, inputs=[prompt, ip_adapter_image, ip_adapter_scale], outputs=[result, seed], cache_examples="lazy" ) # 버튼 클릭/프롬프트 엔터 시 실행 gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, ip_adapter_image, ip_adapter_scale, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps ], outputs=[result, seed] ) demo.queue().launch()