|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import gc |
|
import os |
|
import datetime |
|
import time |
|
|
|
|
|
MODEL_ID = "naver-hyperclovax/HyperCLOVAX-SEED-Text-Instruct-0.5B" |
|
MAX_NEW_TOKENS = 512 |
|
USE_GPU = True |
|
|
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
if not HF_TOKEN: |
|
print("κ²½κ³ : HF_TOKEN νκ²½ λ³μκ° μ€μ λμ§ μμμ΅λλ€. λΉκ³΅κ° λͺ¨λΈμ μ κ·Όν μ μμ μ μμ΅λλ€.") |
|
|
|
|
|
print("--- Environment Setup ---") |
|
device = torch.device("cuda" if torch.cuda.is_available() and USE_GPU else "cpu") |
|
print(f"PyTorch version: {torch.__version__}") |
|
print(f"Running on device: {device}") |
|
print(f"Torch Threads: {torch.get_num_threads()}") |
|
print(f"HF_TOKEN μ€μ μ¬λΆ: {'μμ' if HF_TOKEN else 'μμ'}") |
|
|
|
|
|
custom_css = """ |
|
.gradio-container { |
|
max-width: 850px !important; |
|
margin: auto; |
|
} |
|
.gr-chat { |
|
border-radius: 10px; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
} |
|
.user-message { |
|
background-color: #f0f7ff !important; |
|
border-radius: 8px; |
|
} |
|
.assistant-message { |
|
background-color: #f9f9f9 !important; |
|
border-radius: 8px; |
|
} |
|
.gr-button.primary-button { |
|
background-color: #1f4e79 !important; |
|
} |
|
.gr-form { |
|
padding: 20px; |
|
border-radius: 10px; |
|
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.05); |
|
} |
|
#intro-message { |
|
text-align: center; |
|
margin-bottom: 20px; |
|
padding: 15px; |
|
background: linear-gradient(135deg, #e8f4ff 0%, #f0f7ff 100%); |
|
border-radius: 10px; |
|
border-left: 4px solid #1f4e79; |
|
} |
|
.footer { |
|
text-align: center; |
|
margin-top: 20px; |
|
font-size: 0.8em; |
|
color: #666; |
|
} |
|
""" |
|
|
|
|
|
print(f"--- Loading Model: {MODEL_ID} ---") |
|
print("This might take a few minutes, especially on the first launch...") |
|
|
|
model = None |
|
tokenizer = None |
|
load_successful = False |
|
stop_token_ids_list = [] |
|
|
|
try: |
|
start_load_time = time.time() |
|
|
|
|
|
tokenizer_kwargs = { |
|
"trust_remote_code": True |
|
} |
|
|
|
|
|
if HF_TOKEN: |
|
tokenizer_kwargs["token"] = HF_TOKEN |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_ID, |
|
**tokenizer_kwargs |
|
) |
|
|
|
|
|
model_kwargs = { |
|
"trust_remote_code": True, |
|
"device_map": "auto" if device.type == "cuda" else "cpu", |
|
"torch_dtype": torch.float16 if device.type == "cuda" else torch.float32, |
|
} |
|
|
|
|
|
if HF_TOKEN: |
|
model_kwargs["token"] = HF_TOKEN |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
**model_kwargs |
|
) |
|
|
|
model.eval() |
|
load_time = time.time() - start_load_time |
|
print(f"--- Model and Tokenizer Loaded Successfully in {load_time:.2f} seconds ---") |
|
load_successful = True |
|
|
|
|
|
stop_token_strings = ["<|endofturn|>", "<|stop|>"] |
|
temp_stop_ids = [tokenizer.convert_tokens_to_ids(token) for token in stop_token_strings] |
|
|
|
if tokenizer.eos_token_id is not None and tokenizer.eos_token_id not in temp_stop_ids: |
|
temp_stop_ids.append(tokenizer.eos_token_id) |
|
elif tokenizer.eos_token_id is None: |
|
print("Warning: tokenizer.eos_token_id is None. Cannot add to stop tokens.") |
|
|
|
stop_token_ids_list = [tid for tid in temp_stop_ids if tid is not None] |
|
|
|
if not stop_token_ids_list: |
|
print("Warning: Could not find any stop token IDs. Using default EOS if available, otherwise generation might not stop correctly.") |
|
if tokenizer.eos_token_id is not None: |
|
stop_token_ids_list = [tokenizer.eos_token_id] |
|
else: |
|
print("Error: No stop tokens found, including default EOS. Generation may run indefinitely.") |
|
|
|
print(f"Using Stop Token IDs: {stop_token_ids_list}") |
|
|
|
except Exception as e: |
|
print(f"!!! Error loading model: {e}") |
|
if 'model' in locals() and model is not None: del model |
|
if 'tokenizer' in locals() and tokenizer is not None: del tokenizer |
|
gc.collect() |
|
|
|
raise gr.Error(f"Failed to load the model {MODEL_ID}. Cannot start the application. Error: {e}") |
|
|
|
|
|
def get_system_prompt(): |
|
current_date = datetime.datetime.now().strftime("%Y-%m-%d (%A)") |
|
return ( |
|
f"- AI μΈμ΄λͺ¨λΈμ μ΄λ¦μ \"CLOVA X\" μ΄λ©° λ€μ΄λ²μμ λ§λ€μλ€.\n" |
|
f"- μ€λμ {current_date}μ΄λ€.\n" |
|
f"- μ¬μ©μμ μ§λ¬Έμ λν΄ μΉμ νκ³ μμΈνκ² νκ΅μ΄λ‘ λ΅λ³ν΄μΌ νλ€." |
|
) |
|
|
|
|
|
def warmup_model(): |
|
if not load_successful or model is None or tokenizer is None: |
|
print("Skipping warmup: Model not loaded successfully.") |
|
return |
|
|
|
print("--- Starting Model Warm-up ---") |
|
try: |
|
start_warmup_time = time.time() |
|
warmup_message = "μλ
νμΈμ" |
|
system_prompt = get_system_prompt() |
|
warmup_chat = [ |
|
{"role": "tool_list", "content": ""}, |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": warmup_message} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template( |
|
warmup_chat, |
|
add_generation_prompt=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(device) |
|
|
|
|
|
gen_kwargs = { |
|
"max_new_tokens": 10, |
|
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id, |
|
"do_sample": False |
|
} |
|
if stop_token_ids_list: |
|
gen_kwargs["eos_token_id"] = stop_token_ids_list |
|
else: |
|
print("Warmup Warning: No stop tokens defined for generation.") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate(**inputs, **gen_kwargs) |
|
|
|
del inputs |
|
del output_ids |
|
gc.collect() |
|
warmup_time = time.time() - start_warmup_time |
|
print(f"--- Model Warm-up Completed in {warmup_time:.2f} seconds ---") |
|
|
|
except Exception as e: |
|
print(f"!!! Error during model warm-up: {e}") |
|
finally: |
|
gc.collect() |
|
|
|
|
|
def predict(message, history): |
|
""" |
|
Generates response using HyperCLOVAX. |
|
Assumes 'history' is in the Gradio 'messages' format: List[Dict]. |
|
""" |
|
if model is None or tokenizer is None: |
|
return "μ€λ₯: λͺ¨λΈμ΄ λ‘λλμ§ μμμ΅λλ€." |
|
|
|
system_prompt = get_system_prompt() |
|
|
|
|
|
chat_history_formatted = [ |
|
{"role": "tool_list", "content": ""}, |
|
{"role": "system", "content": system_prompt} |
|
] |
|
|
|
|
|
if isinstance(history, list): |
|
for turn in history: |
|
|
|
if isinstance(turn, dict) and "role" in turn and "content" in turn: |
|
chat_history_formatted.append(turn) |
|
|
|
elif isinstance(turn, (list, tuple)) and len(turn) == 2: |
|
print(f"Warning: Received history item in tuple format: {turn}. Converting to messages format.") |
|
chat_history_formatted.append({"role": "user", "content": turn[0]}) |
|
if turn[1]: |
|
chat_history_formatted.append({"role": "assistant", "content": turn[1]}) |
|
else: |
|
print(f"Warning: Skipping unexpected history format item: {turn}") |
|
|
|
|
|
chat_history_formatted.append({"role": "user", "content": message}) |
|
|
|
inputs = None |
|
output_ids = None |
|
|
|
try: |
|
inputs = tokenizer.apply_chat_template( |
|
chat_history_formatted, |
|
add_generation_prompt=True, |
|
return_dict=True, |
|
return_tensors="pt" |
|
).to(device) |
|
input_length = inputs['input_ids'].shape[1] |
|
print(f"\nInput tokens: {input_length}") |
|
|
|
except Exception as e: |
|
print(f"!!! Error applying chat template: {e}") |
|
return f"μ€λ₯: μ
λ ₯ νμμ μ²λ¦¬νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})" |
|
|
|
try: |
|
print("Generating response...") |
|
generation_start_time = time.time() |
|
|
|
|
|
gen_kwargs = { |
|
"max_new_tokens": MAX_NEW_TOKENS, |
|
"pad_token_id": tokenizer.eos_token_id if tokenizer.eos_token_id is not None else tokenizer.pad_token_id, |
|
"do_sample": True, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
} |
|
if stop_token_ids_list: |
|
gen_kwargs["eos_token_id"] = stop_token_ids_list |
|
else: |
|
print("Generation Warning: No stop tokens defined.") |
|
|
|
with torch.no_grad(): |
|
output_ids = model.generate(**inputs, **gen_kwargs) |
|
|
|
generation_time = time.time() - generation_start_time |
|
print(f"Generation complete in {generation_time:.2f} seconds.") |
|
|
|
except Exception as e: |
|
print(f"!!! Error during model generation: {e}") |
|
if inputs is not None: del inputs |
|
if output_ids is not None: del output_ids |
|
gc.collect() |
|
return f"μ€λ₯: μλ΅μ μμ±νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€. ({e})" |
|
|
|
|
|
response = "μ€λ₯: μλ΅ μμ±μ μ€ν¨νμ΅λλ€." |
|
if output_ids is not None: |
|
try: |
|
new_tokens = output_ids[0, input_length:] |
|
response = tokenizer.decode(new_tokens, skip_special_tokens=True) |
|
print(f"Output tokens: {len(new_tokens)}") |
|
del new_tokens |
|
except Exception as e: |
|
print(f"!!! Error decoding response: {e}") |
|
response = "μ€λ₯: μλ΅μ λμ½λ©νλ μ€ λ¬Έμ κ° λ°μνμ΅λλ€." |
|
|
|
|
|
if inputs is not None: del inputs |
|
if output_ids is not None: del output_ids |
|
gc.collect() |
|
print("Memory cleaned.") |
|
|
|
return response |
|
|
|
|
|
def create_welcome_markdown(): |
|
return """ |
|
# π°π· λ€μ΄λ² HyperCLOVA X SEED |
|
|
|
νκ΅μ κΈ°μ λ ₯μΌλ‘ κ°λ°λ λ€μ΄λ²μ μ΄κ±°λ AI μΈμ΄λͺ¨λΈ 'HyperCLOVA X'λ₯Ό κ²½νν΄λ³΄μΈμ. |
|
μ΄ λ°λͺ¨λ 0.5B νλΌλ―Έν° κ²½λ λͺ¨λΈμ μ¬μ©νμ¬ νκ΅μ΄ μμ°μ΄ μ²λ¦¬ λ₯λ ₯μ 보μ¬μ€λλ€. |
|
|
|
**μ¬μ© λ°©λ²**: |
|
- μλ μ±ν
μ°½μ μ§λ¬Έμ΄λ μμ²μ μ
λ ₯νμΈμ |
|
- νκ΅μ΄λ‘ λ€μν μ£Όμ μ λν λνλ₯Ό λλ 보μΈμ |
|
- μμ μ§λ¬Έμ ν΄λ¦νμ¬ λΉ λ₯΄κ² μμν μλ μμ΅λλ€ |
|
""" |
|
|
|
|
|
print("--- Setting up Gradio Interface ---") |
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.Markdown(create_welcome_markdown(), elem_id="intro-message") |
|
|
|
chatbot = gr.ChatInterface( |
|
fn=predict, |
|
title="", |
|
description="", |
|
examples=[ |
|
["λ€μ΄λ² ν΄λ‘λ°Xλ 무μμΈκ°μ?"], |
|
["μλ’°λ©κ±° λ°©μ μκ³Ό μμμνμ κ΄κ³λ₯Ό μ€λͺ
ν΄μ£ΌμΈμ."], |
|
["λ₯λ¬λ λͺ¨λΈ νμ΅ κ³Όμ μ λ¨κ³λ³λ‘ μλ €μ€."], |
|
["μ μ£Όλ μ¬ν κ³νμ μΈμ°κ³ μλλ°, 3λ° 4μΌ μΆμ² μ½μ€ μ’ μ§μ€λ?"], |
|
["νκ΅ μμ¬μμ κ°μ₯ μ€μν μ¬κ±΄ 5κ°μ§λ 무μμΈκ°μ?"], |
|
["μΈκ³΅μ§λ₯ μ€λ¦¬μ λν΄ μ€λͺ
ν΄μ£ΌμΈμ."], |
|
], |
|
cache_examples=False, |
|
submit_btn="보λ΄κΈ°", |
|
retry_btn="λ€μ μλ", |
|
undo_btn="μ·¨μ", |
|
clear_btn="μλ‘μ΄ λν", |
|
) |
|
|
|
with gr.Accordion("λͺ¨λΈ μ 보", open=False): |
|
gr.Markdown(f""" |
|
- **λͺ¨λΈ**: {MODEL_ID} |
|
- **νκ²½**: ZeroGPU 곡μ νκ²½μμ μ€ν μ€ |
|
- **ν ν° μ ν**: μ΅λ μμ± ν ν° μλ {MAX_NEW_TOKENS}κ°λ‘ μ νλ©λλ€. |
|
- **νλμ¨μ΄**: {"GPU" if device.type == "cuda" else "CPU"} νκ²½μμ μ€ν μ€ |
|
""") |
|
|
|
gr.Markdown( |
|
"Β© 2025 λ€μ΄λ² HyperCLOVA X λ°λͺ¨ | Powered by Hugging Face & ZeroGPU", |
|
elem_classes="footer" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
if load_successful: |
|
warmup_model() |
|
else: |
|
print("Skipping warm-up because model loading failed.") |
|
|
|
print("--- Launching Gradio App ---") |
|
demo.queue().launch( |
|
|
|
|
|
) |