File size: 6,862 Bytes
632d6e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8036ec
632d6e5
 
 
 
 
 
 
 
 
 
 
 
 
c8036ec
632d6e5
c8036ec
632d6e5
c8036ec
 
632d6e5
 
 
 
c8036ec
632d6e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8036ec
632d6e5
c8036ec
632d6e5
c8036ec
632d6e5
c8036ec
632d6e5
c8036ec
632d6e5
c8036ec
 
632d6e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
919d837
c8036ec
 
 
 
 
 
632d6e5
 
 
 
 
 
 
 
 
 
 
 
 
 
919d837
 
 
632d6e5
919d837
632d6e5
 
 
 
 
 
 
 
 
 
 
 
b5d9ec0
632d6e5
 
 
c8036ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import spaces
import json
import subprocess
import os
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download

llm = None
llm_model = None

# ๋ชจ๋ธ ์ด๋ฆ„๊ณผ ๊ฒฝ๋กœ๋ฅผ ์ •์˜
MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf"

# ๋ชจ๋ธ ๋‹ค์šด๋กœ๋“œ
model_path = hf_hub_download(
    repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503",
    filename=MISTRAL_MODEL_NAME,
    local_dir="./models"
)

print(f"Downloaded model path: {model_path}")

css = """
.bubble-wrap {
    padding-top: calc(var(--spacing-xl) * 3) !important;
}
.message-row {
    justify-content: space-evenly !important;
    width: 100% !important;
    max-width: 100% !important;
    margin: calc(var(--spacing-xl)) 0 !important;
    padding: 0 calc(var(--spacing-xl) * 3) !important;
}
.flex-wrap.user {
    border-bottom-right-radius: var(--radius-lg) !important;
}
.flex-wrap.bot {
    border-bottom-left-radius: var(--radius-lg) !important;
}
.message.user{
    padding: 10px;
}
.message.bot{
    text-align: right;
    width: 100%;
    padding: 10px;
    border-radius: 10px;
}
.message-bubble-border {
    border-radius: 6px !important;
}
.message-buttons {
    justify-content: flex-end !important;
}
.message-buttons-left {
    align-self: end !important;
}
.message-buttons-bot, .message-buttons-user {
    right: 10px !important;
    left: auto !important;
    bottom: 2px !important;
}
.dark.message-bubble-border {
    border-color: #343140 !important;
}
.dark.user {
    background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
    background: #16141c !important;
}
"""

def get_messages_formatter_type(model_name):
    if "Mistral" in model_name or "BitSix" in model_name:
        return MessagesFormatterType.CHATML  # Mistral ๊ณ„์—ด ๋ชจ๋ธ์€ ChatML ํ˜•์‹ ์‚ฌ์šฉ
    else:
        raise ValueError(f"Unsupported model: {model_name}")

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[dict],  # history ํ•ญ๋ชฉ์ด tuple์ด ์•„๋‹Œ dict ํ˜•์‹์œผ๋กœ ์ „๋‹ฌ๋จ
    system_message,
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
):
    global llm
    global llm_model
    
    chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME)
    
    # ๋ชจ๋ธ ํŒŒ์ผ ๊ฒฝ๋กœ ํ™•์ธ
    model_path_local = os.path.join("./models", MISTRAL_MODEL_NAME)
    
    print(f"Model path: {model_path_local}")
    
    if not os.path.exists(model_path_local):
        print(f"Warning: Model file not found at {model_path_local}")
        print(f"Available files in ./models: {os.listdir('./models')}")
    
    if llm is None or llm_model != MISTRAL_MODEL_NAME:
        llm = Llama(
            model_path=model_path_local,
            flash_attn=True,
            n_gpu_layers=81,
            n_batch=1024,
            n_ctx=8192,
        )
        llm_model = MISTRAL_MODEL_NAME
    
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt=f"{system_message}",
        predefined_messages_formatter_type=chat_template,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    # history์˜ ๊ฐ ํ•ญ๋ชฉ์ด dict ํ˜•์‹์œผ๋กœ {'user': <user_message>, 'assistant': <assistant_message>} ํ˜•ํƒœ๋ผ๊ณ  ๊ฐ€์ •
    for msn in history:
        user_message = {
            'role': Roles.user,
            'content': msn.get('user', '')
        }
        assistant_message = {
            'role': Roles.assistant,
            'content': msn.get('assistant', '')
        }
        messages.add_message(user_message)
        messages.add_message(assistant_message)
    
    stream = agent.get_chat_response(
        message,
        llm_sampling_settings=settings,
        chat_history=messages,
        returns_streaming_generator=True,
        print_output=False
    )
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs


demo = gr.ChatInterface(
    fn=respond,
    title="Ginigen Private AI",
    description="Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503 is a model optimized to run on local 4090 GPUs through 6-bit quantization, based on Mistral-Small-3.1-24B-Instruct-2503",
    theme=gr.themes.Soft(
        primary_hue="violet",
        secondary_hue="violet",
        neutral_hue="gray",
        font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
    ).set(
        body_background_fill_dark="#16141c",
        block_background_fill_dark="#16141c",
        block_border_width="1px",
        block_title_background_fill_dark="#1e1c26",
        input_background_fill_dark="#292733",
        button_secondary_background_fill_dark="#24212b",
        border_color_accent_dark="#343140",
        border_color_primary_dark="#343140",
        background_fill_secondary_dark="#16141c",
        color_accent_soft_dark="transparent",
        code_background_fill_dark="#292733",
    ),
    css=css,
    examples=[
        ["What are the key advantages of 6-bit quantization for large language models like Mistral?"],
        ["Can you explain the architectural innovations in Mistral models that improve reasoning capabilities?"],
        ["ํ•œ๊ตญ์–ด๋กœ ๋ณต์žกํ•œ ์ถ”๋ก  ๊ณผ์ •์„ ์„ค๋ช…ํ•ด์ฃผ์„ธ์š”. ๋ฏธ์ŠคํŠธ๋ž„ ๋ชจ๋ธ์˜ ์žฅ์ ์„ ํ™œ์šฉํ•œ ์˜ˆ์‹œ๋„ ํ•จ๊ป˜ ๋“ค์–ด์ฃผ์„ธ์š”."]
    ],
    
    additional_inputs=[
        gr.Textbox(
            value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem.",
            label="์‹œ์Šคํ…œ ๋ฉ”์‹œ์ง€",
            lines=5
        ),
        gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="์ตœ๋Œ€ ํ† ํฐ ์ˆ˜"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
        gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
        gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
    ],
    chatbot=gr.Chatbot(type="messages")
)

if __name__ == "__main__":
    demo.launch()