Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,955 Bytes
632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 c8036ec 632d6e5 7906bf8 c8036ec 632d6e5 b5d9ec0 632d6e5 c8036ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import spaces
import json
import subprocess
import os
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
llm = None
llm_model = None
# ๋ชจ๋ธ ์ด๋ฆ๊ณผ ๊ฒฝ๋ก๋ฅผ ์ ์
MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf"
# ๋ชจ๋ธ ๋ค์ด๋ก๋
model_path = hf_hub_download(
repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503",
filename=MISTRAL_MODEL_NAME,
local_dir="./models"
)
print(f"Downloaded model path: {model_path}")
css = """
.bubble-wrap {
padding-top: calc(var(--spacing-xl) * 3) !important;
}
.message-row {
justify-content: space-evenly !important;
width: 100% !important;
max-width: 100% !important;
margin: calc(var(--spacing-xl)) 0 !important;
padding: 0 calc(var(--spacing-xl) * 3) !important;
}
.flex-wrap.user {
border-bottom-right-radius: var(--radius-lg) !important;
}
.flex-wrap.bot {
border-bottom-left-radius: var(--radius-lg) !important;
}
.message.user{
padding: 10px;
}
.message.bot{
text-align: right;
width: 100%;
padding: 10px;
border-radius: 10px;
}
.message-bubble-border {
border-radius: 6px !important;
}
.message-buttons {
justify-content: flex-end !important;
}
.message-buttons-left {
align-self: end !important;
}
.message-buttons-bot, .message-buttons-user {
right: 10px !important;
left: auto !important;
bottom: 2px !important;
}
.dark.message-bubble-border {
border-color: #343140 !important;
}
.dark.user {
background: #1e1c26 !important;
}
.dark.assistant.dark, .dark.pending.dark {
background: #16141c !important;
}
"""
def get_messages_formatter_type(model_name):
if "Mistral" in model_name or "BitSix" in model_name:
return MessagesFormatterType.CHATML # Mistral ๊ณ์ด ๋ชจ๋ธ์ ChatML ํ์ ์ฌ์ฉ
else:
raise ValueError(f"Unsupported model: {model_name}")
@spaces.GPU(duration=120)
def respond(
message,
history: list[dict], # history ํญ๋ชฉ์ด tuple์ด ์๋ dict ํ์์ผ๋ก ์ ๋ฌ๋จ
system_message,
max_tokens,
temperature,
top_p,
top_k,
repeat_penalty,
):
global llm
global llm_model
chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME)
# ๋ชจ๋ธ ํ์ผ ๊ฒฝ๋ก ํ์ธ
model_path_local = os.path.join("./models", MISTRAL_MODEL_NAME)
print(f"Model path: {model_path_local}")
if not os.path.exists(model_path_local):
print(f"Warning: Model file not found at {model_path_local}")
print(f"Available files in ./models: {os.listdir('./models')}")
if llm is None or llm_model != MISTRAL_MODEL_NAME:
llm = Llama(
model_path=model_path_local,
flash_attn=True,
n_gpu_layers=81,
n_batch=1024,
n_ctx=8192,
)
llm_model = MISTRAL_MODEL_NAME
provider = LlamaCppPythonProvider(llm)
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=chat_template,
debug_output=True
)
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# history์ ๊ฐ ํญ๋ชฉ์ด dict ํ์์ผ๋ก {'user': <user_message>, 'assistant': <assistant_message>} ํํ๋ผ๊ณ ๊ฐ์
for msn in history:
user_message = {
'role': Roles.user,
'content': msn.get('user', '')
}
assistant_message = {
'role': Roles.assistant,
'content': msn.get('assistant', '')
}
messages.add_message(user_message)
messages.add_message(assistant_message)
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False
)
outputs = ""
for output in stream:
outputs += output
yield outputs
demo = gr.ChatInterface(
fn=respond,
title="Ginigen Private AI",
description="6BIT ์์ํ๋ก ๋ชจ๋ธ ํฌ๊ธฐ๋ ์ค์ด๊ณ ์ฑ๋ฅ์ ์ ์งํ๋ ํ๋ผ์ด๋ฒ์ ์ค์ฌ AI ์๋ฃจ์
: The Ginigen Private-BitSix framework simplifies interactions with Large Language Models (LLMs), providing an interface for chatting, executing function calls, generating structured output, performing retrieval augmented generation, and processing text using agentic chains with tools.",
theme=gr.themes.Soft(
primary_hue="violet",
secondary_hue="violet",
neutral_hue="gray",
font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]
).set(
body_background_fill_dark="#16141c",
block_background_fill_dark="#16141c",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_accent_dark="#343140",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#16141c",
color_accent_soft_dark="transparent",
code_background_fill_dark="#292733",
),
css=css,
examples=[
["์๋
ํ์ธ์, ์ ๋ AI์ ๊ด์ฌ์ด ๋ง์ต๋๋ค. ์์ํ๋ ๋ฌด์์ธ๊ฐ์?"],
["๋ฏธ์คํธ๋ ๋ชจ๋ธ์ ํน์ง์ ๋ฌด์์ธ๊ฐ์?"],
["๊ธด ์ปจํ
์คํธ(context)๋ฅผ ์ฒ๋ฆฌํ๋ ๋ฐฉ๋ฒ์ ์ค๋ช
ํด ์ฃผ์ธ์."]
],
additional_inputs=[
gr.Textbox(
value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem.",
label="์์คํ
๋ฉ์์ง",
lines=5
),
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="์ต๋ ํ ํฐ ์"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
],
chatbot=gr.Chatbot(type="messages")
)
if __name__ == "__main__":
demo.launch()
|