import spaces import json import subprocess import os from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles import gradio as gr from huggingface_hub import hf_hub_download llm = None llm_model = None # 모델 이름과 경로를 정의 MISTRAL_MODEL_NAME = "Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503.gguf" # 모델 다운로드 model_path = hf_hub_download( repo_id="ginigen/Private-BitSix-Mistral-Small-3.1-24B-Instruct-2503", filename=MISTRAL_MODEL_NAME, local_dir="./models" ) print(f"Downloaded model path: {model_path}") css = """ .bubble-wrap { padding-top: calc(var(--spacing-xl) * 3) !important; } .message-row { justify-content: space-evenly !important; width: 100% !important; max-width: 100% !important; margin: calc(var(--spacing-xl)) 0 !important; padding: 0 calc(var(--spacing-xl) * 3) !important; } .flex-wrap.user { border-bottom-right-radius: var(--radius-lg) !important; } .flex-wrap.bot { border-bottom-left-radius: var(--radius-lg) !important; } .message.user{ padding: 10px; } .message.bot{ text-align: right; width: 100%; padding: 10px; border-radius: 10px; } .message-bubble-border { border-radius: 6px !important; } .message-buttons { justify-content: flex-end !important; } .message-buttons-left { align-self: end !important; } .message-buttons-bot, .message-buttons-user { right: 10px !important; left: auto !important; bottom: 2px !important; } .dark.message-bubble-border { border-color: #343140 !important; } .dark.user { background: #1e1c26 !important; } .dark.assistant.dark, .dark.pending.dark { background: #16141c !important; } """ def get_messages_formatter_type(model_name): if "Mistral" in model_name or "BitSix" in model_name: return MessagesFormatterType.CHATML # Mistral 계열 모델은 ChatML 형식 사용 else: raise ValueError(f"Unsupported model: {model_name}") @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, top_k, repeat_penalty, ): global llm global llm_model chat_template = get_messages_formatter_type(MISTRAL_MODEL_NAME) # 모델 파일 경로 확인 model_path = os.path.join("./models", MISTRAL_MODEL_NAME) print(f"Model path: {model_path}") if not os.path.exists(model_path): print(f"Warning: Model file not found at {model_path}") print(f"Available files in ./models: {os.listdir('./models')}") if llm is None or llm_model != MISTRAL_MODEL_NAME: llm = Llama( model_path=model_path, flash_attn=True, n_gpu_layers=81, n_batch=1024, n_ctx=8192, ) llm_model = MISTRAL_MODEL_NAME provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt=f"{system_message}", predefined_messages_formatter_type=chat_template, debug_output=True ) settings = provider.get_provider_default_settings() settings.temperature = temperature settings.top_k = top_k settings.top_p = top_p settings.max_tokens = max_tokens settings.repeat_penalty = repeat_penalty settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response( message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False ) outputs = "" for output in stream: outputs += output yield outputs PLACEHOLDER = """
""" demo = gr.ChatInterface( fn=respond, title="Ginigen Private AI", description="6BIT 양자화로 모델 크기는 줄이고 성능은 유지하는 프라이버시 중심 AI 솔루션.", theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( body_background_fill_dark="#16141c", block_background_fill_dark="#16141c", block_border_width="1px", block_title_background_fill_dark="#1e1c26", input_background_fill_dark="#292733", button_secondary_background_fill_dark="#24212b", border_color_accent_dark="#343140", border_color_primary_dark="#343140", background_fill_secondary_dark="#16141c", color_accent_soft_dark="transparent", code_background_fill_dark="#292733", ), css=css, examples=[ ["안녕하세요, 저는 AI에 관심이 많습니다. 양자화란 무엇인가요?"], ["미스트랄 모델의 특징은 무엇인가요?"], ["긴 컨텍스트(context)를 처리하는 방법을 설명해 주세요."] ], additional_inputs=[ gr.Textbox( value="You are a deep thinking AI, you may use extremely long chains of thought to deeply consider the problem and deliberate with yourself via systematic reasoning processes to help come to a correct solution prior to answering. You should enclose your thoughts and internal monologue inside tags, and then provide your solution or response to the problem.", label="시스템 메시지", lines=5 ), gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="최대 토큰 수"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"), gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"), ], chatbot=gr.Chatbot(placeholder=PLACEHOLDER, type="messages") ) if __name__ == "__main__": demo.launch()