File size: 9,014 Bytes
762cb7d
 
 
fc49e89
 
54299ef
 
fc49e89
 
54299ef
 
 
 
2f34862
d63485e
54299ef
fc49e89
2f34862
 
 
 
 
 
 
fc49e89
 
 
 
 
 
54299ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f34862
54299ef
2f34862
 
54299ef
 
 
fc49e89
 
54299ef
 
 
 
 
 
 
 
fc49e89
 
 
 
 
54299ef
 
 
 
 
 
 
2f34862
54299ef
 
 
 
 
 
 
 
 
 
2f34862
54299ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
 
 
2f34862
fc49e89
 
 
 
 
 
 
 
 
2f34862
 
 
 
 
 
 
 
fc49e89
 
 
 
 
54299ef
fc49e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f34862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
 
2f34862
fc49e89
 
54299ef
 
 
5f21c0e
54299ef
fc49e89
 
 
 
 
 
 
2f34862
 
fc49e89
2f34862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc49e89
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import subprocess
subprocess.run('pip install flash-attn==2.7.0.post2 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import os
import re
import logging
from typing import List, Any
from threading import Thread

import torch
import gradio as gr
from transformers import AutoModelForCausalLM, TextIteratorStreamer

# 모델 및 토크나이저 로딩
model_name = 'AIDC-AI/Ovis2-8B'
use_thread = False

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    multimodal_max_length=8192,
    trust_remote_code=True
).to(device='cuda')

text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def initialize_gen_kwargs():
    return {
        "max_new_tokens": 1536,
        "do_sample": False,
        "top_p": None,
        "top_k": None,
        "temperature": None,
        "repetition_penalty": 1.05,
        "eos_token_id": model.generation_config.eos_token_id,
        "pad_token_id": text_tokenizer.pad_token_id,
        "use_cache": True
    }

def submit_chat(chatbot, text_input):
    response = ''
    chatbot.append((text_input, response))
    return chatbot, ''

@gradio.routes.no_temp_folder()
@gradio.gpu()
def ovis_chat(chatbot: List[List[str]], image_input: Any):
    conversations, model_inputs = prepare_inputs(chatbot, image_input)
    gen_kwargs = initialize_gen_kwargs()

    with torch.inference_mode():
        generate_func = lambda: model.generate(**model_inputs, **gen_kwargs, streamer=streamer)
        
        if use_thread:
            thread = Thread(target=generate_func)
            thread.start()
        else:
            generate_func()

        response = ""
        for new_text in streamer:
            response += new_text
            chatbot[-1][1] = response
            yield chatbot

        if use_thread:
            thread.join()

    log_conversation(chatbot)

def prepare_inputs(chatbot: List[List[str]], image_input: Any):
    conversations = []
    for query, response in chatbot[:-1]:
        conversations.extend([
            {"from": "human", "value": query},
            {"from": "gpt", "value": response}
        ])
    
    last_query = chatbot[-1][0].replace(image_placeholder, '')
    conversations.append({"from": "human", "value": last_query})

    if image_input is not None:
        # 이미지가 포함되면 첫 번째 human 메시지에 이미지 태그 추가
        for conv in conversations:
            if conv["from"] == "human":
                conv["value"] = f'{image_placeholder}\n{conv["value"]}'
                break

    logger.info(conversations)
    
    prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input], max_partition=16)
    attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
    
    model_inputs = {
        "inputs": input_ids.unsqueeze(0).to(device=model.device),
        "attention_mask": attention_mask.unsqueeze(0).to(device=model.device),
        "pixel_values": [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] if image_input is not None else [None]
    }
    
    return conversations, model_inputs

def log_conversation(chatbot):
    logger.info("[OVIS_CONV_START]")
    [print(f'Q{i}:\n {request}\nA{i}:\n {answer}') for i, (request, answer) in enumerate(chatbot, 1)]
    logger.info("[OVIS_CONV_END]")

def clear_chat():
    return [], None, ""

# 로고 SVG 로드 및 스타일 수정
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center>
    <font size=3>
        <b>Ovis</b> has been open-sourced on 
        <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and 
        <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. 
        If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.
    </font>
</center>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }, {
        "left": "\\begin{alignat}",
        "right": "\\end{alignat}",
        "display": True
    }, {
        "left": "\\begin{gather}",
        "right": "\\end{gather}",
        "display": True
    }, {
        "left": "\\begin{CD}",
        "right": "\\end{CD}",
        "display": True
    }, {
        "left": "\\[",
        "right": "\\]",
        "display": True
    }]

text_input = gr.Textbox(label="Prompt", placeholder="Enter your text here...", lines=1, container=False)

# 커스텀 CSS (배경 그라데이션, 반투명 컨테이너, 버튼 애니메이션 등)
custom_css = """
body {
    background: linear-gradient(135deg, #667eea, #764ba2);
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    color: #333;
    margin: 0;
    padding: 0;
}
.gradio-container {
    background: rgba(255, 255, 255, 0.95);
    border-radius: 15px;
    padding: 30px 40px;
    box-shadow: 0 8px 30px rgba(0, 0, 0, 0.3);
    margin: 40px auto;
    max-width: 1200px;
}
.gradio-container h1 {
    color: #333;
    text-shadow: 1px 1px 2px rgba(0, 0, 0, 0.2);
}
.fillable { 
    width: 95% !important; 
    max-width: unset !important;
}
#examples_container {
    margin: auto;
    width: 90%;
}
#examples_row {
    justify-content: center;
}
.sidebar {
    background: rgba(255, 255, 255, 0.98);
    border-radius: 10px;
    padding: 20px;
    box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
button, .btn {
    background: linear-gradient(90deg, #ff8a00, #e52e71);
    border: none;
    color: #fff;
    padding: 12px 24px;
    text-transform: uppercase;
    font-weight: bold;
    letter-spacing: 1px;
    border-radius: 5px;
    cursor: pointer;
    transition: transform 0.2s ease-in-out;
}
button:hover, .btn:hover {
    transform: scale(1.05);
}
"""

with gr.Blocks(css=custom_css, title=model_name.split('/')[-1]) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(label="Image", height=350, type="pil")
            gr.Examples(
                examples=[
                    [f"{cur_dir}/examples/ovis2_math0.jpg", "Each face of the polyhedron shown is either a triangle or a square. Each square borders 4 triangles, and each triangle borders 3 squares. The polyhedron has 6 squares. How many triangles does it have?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
                    [f"{cur_dir}/examples/ovis2_math1.jpg", "A large square touches another two squares, as shown in the picture. The numbers inside the smaller squares indicate their areas. What is the area of the largest square?\n\nProvide a step-by-step solution to the problem, and conclude with 'the answer is' followed by the final solution."],
                    [f"{cur_dir}/examples/ovis2_figure0.png", "Explain this model."],
                    [f"{cur_dir}/examples/ovis2_figure1.png", "Organize the notes about GRPO in the figure."],
                    [f"{cur_dir}/examples/ovis2_multi0.jpg", "Posso avere un frappuccino e un caffè americano di taglia M? Quanto costa in totale?"],
                ],
                inputs=[image_input, text_input]
            )
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
            text_input.render()
            with gr.Row():
                send_btn = gr.Button("Send")
                clear_btn = gr.Button("Clear")

    send_click_event = send_btn.click(
        submit_chat, 
        inputs=[chatbot, text_input], 
        outputs=[chatbot, text_input]
    ).then(
        ovis_chat, 
        inputs=[chatbot, image_input], 
        outputs=chatbot
    )
    submit_event = text_input.submit(
        submit_chat, 
        inputs=[chatbot, text_input], 
        outputs=[chatbot, text_input]
    ).then(
        ovis_chat, 
        inputs=[chatbot, image_input], 
        outputs=chatbot
    )
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])

demo.launch()