Spaces:
Running
Running
#!/usr/bin/env python3 | |
""" | |
AI Video Generator with Gradio | |
Single file application - app.py | |
""" | |
import os | |
import gradio as gr | |
import replicate | |
import base64 | |
from PIL import Image, ImageDraw, ImageFont | |
import io | |
import requests | |
from datetime import datetime | |
import tempfile | |
import time | |
# Try to import video processing libraries | |
try: | |
import cv2 | |
import numpy as np | |
VIDEO_PROCESSING_AVAILABLE = True | |
except ImportError: | |
VIDEO_PROCESSING_AVAILABLE = False | |
print("Warning: cv2 not available. Watermark feature will be disabled.") | |
# API token setup | |
api_token = os.getenv("RAPI_TOKEN") | |
if api_token: | |
os.environ["REPLICATE_API_TOKEN"] = api_token | |
# Aspect ratio options | |
ASPECT_RATIOS = { | |
"16:9": "16:9 (YouTube, Standard Video)", | |
"4:3": "4:3 (Traditional TV Format)", | |
"1:1": "1:1 (Instagram Feed)", | |
"3:4": "3:4 (Instagram Portrait)", | |
"9:16": "9:16 (Instagram Reels, TikTok)", | |
"21:9": "21:9 (Cinematic Wide)", | |
"9:21": "9:21 (Ultra Vertical)" | |
} | |
# Default prompts | |
DEFAULT_TEXT_PROMPT = "" | |
DEFAULT_IMAGE_PROMPT = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions." | |
def add_watermark_cv2(input_video_path, output_video_path): | |
"""Add watermark to video using OpenCV""" | |
if not VIDEO_PROCESSING_AVAILABLE: | |
return False | |
try: | |
# Open the video | |
cap = cv2.VideoCapture(input_video_path) | |
# Get video properties | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
# Define codec and create VideoWriter | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) | |
# Watermark settings | |
watermark_text = "ginigen.com" | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
font_scale = max(0.4, height * 0.001) # Scale based on video height | |
font_thickness = max(1, int(height * 0.002)) | |
# Get text size | |
(text_width, text_height), baseline = cv2.getTextSize(watermark_text, font, font_scale, font_thickness) | |
# Position (bottom right with padding) | |
padding = int(width * 0.02) | |
x = width - text_width - padding | |
y = height - padding | |
# Process each frame | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Add semi-transparent background for text | |
overlay = frame.copy() | |
cv2.rectangle(overlay, | |
(x - 5, y - text_height - 5), | |
(x + text_width + 5, y + 5), | |
(0, 0, 0), | |
-1) | |
frame = cv2.addWeighted(frame, 0.7, overlay, 0.3, 0) | |
# Add text | |
cv2.putText(frame, watermark_text, (x, y), font, font_scale, (255, 255, 255), font_thickness, cv2.LINE_AA) | |
# Write frame | |
out.write(frame) | |
# Release everything | |
cap.release() | |
out.release() | |
cv2.destroyAllWindows() | |
return True | |
except Exception as e: | |
print(f"Watermark error: {str(e)}") | |
return False | |
def add_watermark_simple(input_video_path, output_video_path): | |
"""Simple fallback - just copy the video without watermark""" | |
try: | |
import shutil | |
shutil.copy2(input_video_path, output_video_path) | |
return False | |
except Exception as e: | |
print(f"Copy error: {str(e)}") | |
return False | |
def add_watermark(input_video_path, output_video_path): | |
"""Add watermark to video - tries cv2 first, then fallback""" | |
if VIDEO_PROCESSING_AVAILABLE: | |
success = add_watermark_cv2(input_video_path, output_video_path) | |
if success: | |
return True | |
# Fallback - just copy without watermark | |
return add_watermark_simple(input_video_path, output_video_path) | |
def update_prompt_placeholder(mode): | |
"""Update prompt placeholder based on mode""" | |
if mode == "Text to Video": | |
return gr.update( | |
placeholder="Describe the video you want to create.\nExample: The sun rises slowly between tall buildings. [Ground-level follow shot] Bicycle tires roll over a dew-covered street at dawn.", | |
value="" | |
) | |
else: | |
return gr.update( | |
placeholder="Describe how the image should move.\nExample: Camera slowly zooms in while clouds move across the sky. The subject's hair gently moves in the wind.", | |
value=DEFAULT_IMAGE_PROMPT | |
) | |
def update_image_input(mode): | |
"""Show/hide image input based on mode""" | |
if mode == "Image to Video": | |
return gr.update(visible=True) | |
else: | |
return gr.update(visible=False) | |
def generate_video(mode, prompt, image, aspect_ratio, seed, api_key_input, progress=gr.Progress()): | |
"""Main video generation function""" | |
# API token check | |
token = api_key_input or api_token | |
if not token: | |
return None, "β API token required. Please set RAPI_TOKEN environment variable or enter your API key." | |
os.environ["REPLICATE_API_TOKEN"] = token | |
# Input validation | |
if not prompt: | |
return None, "β Please enter a prompt." | |
if mode == "Image to Video" and image is None: | |
return None, "β Please upload an image." | |
try: | |
progress(0, desc="Preparing video generation...") | |
# Input parameters setup | |
input_params = { | |
"prompt": prompt, | |
"duration": 5, | |
"resolution": "480p", | |
"aspect_ratio": aspect_ratio, | |
"seed": seed | |
} | |
# Image to video mode | |
if mode == "Image to Video" and image is not None: | |
progress(0.1, desc="Processing image...") | |
# Convert PIL Image to base64 | |
if isinstance(image, str): # File path | |
with Image.open(image) as img: | |
buffered = io.BytesIO() | |
img.save(buffered, format="PNG") | |
image_base64 = base64.b64encode(buffered.getvalue()).decode() | |
else: # PIL Image object | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
image_base64 = base64.b64encode(buffered.getvalue()).decode() | |
input_params["image"] = f"data:image/png;base64,{image_base64}" | |
progress(0.2, desc="Preparing API request...") | |
# Set up Replicate with the API token | |
replicate.api_token = token | |
# Skip model availability check to avoid delays | |
# The actual run will handle cold start retries | |
progress(0.3, desc="Calling Replicate API...") | |
# Run Replicate with retry logic | |
max_attempts = 3 | |
output = None | |
for attempt in range(max_attempts): | |
try: | |
# Run Replicate - use the model directly without version specifier | |
start_time = time.time() | |
progress(0.3 + attempt * 0.1, desc=f"Generating video... (Attempt {attempt + 1}/{max_attempts})") | |
# Run the model | |
output = replicate.run( | |
"bytedance/seedance-1-lite", | |
input=input_params | |
) | |
# If we got output, break the retry loop | |
if output: | |
break | |
except Exception as e: | |
error_str = str(e) | |
# Handle specific error patterns | |
if "Prediction interrupted" in error_str or "code: PA" in error_str: | |
if attempt < max_attempts - 1: | |
wait_time = 45 + (attempt * 20) # Longer wait for interrupted predictions | |
progress(0.3, desc=f"Model is cold starting. This is normal for first use. Waiting {wait_time}s...") | |
time.sleep(wait_time) | |
continue | |
else: | |
return None, "β Model is still warming up. Please wait 2-3 minutes and try again with a simple prompt like 'a cat walking'." | |
elif "cold boot" in error_str.lower() or "starting" in error_str.lower(): | |
if attempt < max_attempts - 1: | |
progress(0.3, desc=f"Model is starting up, waiting 30s before retry...") | |
time.sleep(30) | |
continue | |
elif "timeout" in error_str.lower(): | |
if attempt < max_attempts - 1: | |
progress(0.3, desc=f"Timeout occurred, retrying... (Attempt {attempt + 2}/{max_attempts})") | |
time.sleep(10) | |
continue | |
elif "ReplicateError" in error_str: | |
return None, f"β Replicate API error: {error_str}" | |
else: | |
if attempt < max_attempts - 1: | |
progress(0.3, desc=f"Error occurred, retrying... (Attempt {attempt + 2}/{max_attempts})") | |
time.sleep(5) | |
continue | |
else: | |
return None, f"β Unexpected error: {error_str}" | |
# Check if we got output | |
if not output: | |
return None, "β Failed to generate video. The model might be cold starting. Please wait 2-3 minutes and try again with a simple prompt." | |
progress(0.7, desc="Downloading video...") | |
# Get video data | |
if hasattr(output, 'read'): | |
video_data = output.read() | |
else: | |
# Download from URL with timeout | |
response = requests.get(output, timeout=60) | |
video_data = response.content | |
# Save to temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file: | |
tmp_file.write(video_data) | |
temp_video_path = tmp_file.name | |
# Try to add watermark | |
watermark_added = False | |
final_video_path = temp_video_path | |
if VIDEO_PROCESSING_AVAILABLE: | |
progress(0.8, desc="Adding watermark...") | |
final_video_path = tempfile.mktemp(suffix='.mp4') | |
watermark_added = add_watermark(temp_video_path, final_video_path) | |
if not watermark_added or not os.path.exists(final_video_path): | |
final_video_path = temp_video_path | |
# Save final video | |
with open(final_video_path, "rb") as f: | |
final_video_data = f.read() | |
with open("output.mp4", "wb") as file: | |
file.write(final_video_data) | |
# Clean up temp files | |
if temp_video_path != final_video_path and os.path.exists(temp_video_path): | |
try: | |
os.unlink(temp_video_path) | |
except: | |
pass | |
progress(1.0, desc="Complete!") | |
# Generation info | |
watermark_status = "Added" if watermark_added else "Not available (cv2 not installed)" if not VIDEO_PROCESSING_AVAILABLE else "Failed" | |
info = f"""β Video generated successfully! | |
π Generation Info: | |
- Mode: {mode} | |
- Aspect Ratio: {aspect_ratio} | |
- Seed: {seed} | |
- Duration: 5 seconds | |
- Resolution: 480p | |
- Watermark: {watermark_status} | |
- File: output.mp4""" | |
return final_video_path, info | |
except requests.exceptions.Timeout: | |
return None, "β±οΈ Request timed out. The server might be under heavy load. Please try again in a few minutes." | |
except Exception as e: | |
error_msg = f"β Error occurred: {str(e)}" | |
if "timeout" in str(e).lower(): | |
error_msg += "\n\nπ‘ Tip: The model might be cold starting. Please wait a minute and try again." | |
return None, error_msg | |
# Gradio interface | |
with gr.Blocks(title="Bytedance Seedance Video Free", theme=gr.themes.Soft()) as app: | |
gr.Markdown(""" | |
# π¬ Bytedance Seedance Video' Free | |
Generate videos from text or images using **Replicate API**. | |
[](https://ginigen.com/) | |
β οΈ **Note**: First generation may take longer (2-3 minutes) as the model warms up. | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# API Settings | |
with gr.Accordion("βοΈ API Settings", open=not bool(api_token)): | |
if api_token: | |
gr.Markdown("β API token loaded from environment variable.") | |
api_key_input = gr.Textbox( | |
label="Replicate API Token (Optional)", | |
type="password", | |
placeholder="Enter to override environment variable", | |
value="" | |
) | |
else: | |
gr.Markdown("β οΈ RAPI_TOKEN environment variable not set.") | |
api_key_input = gr.Textbox( | |
label="Replicate API Token (Required)", | |
type="password", | |
placeholder="Enter your Replicate API token", | |
value="" | |
) | |
# Generation mode | |
mode = gr.Radio( | |
label="π― Generation Mode", | |
choices=["Text to Video", "Image to Video"], | |
value="Text to Video" | |
) | |
# Image upload | |
image_input = gr.Image( | |
label="π· Upload Image", | |
type="pil", | |
visible=False | |
) | |
# Aspect ratio | |
aspect_ratio = gr.Dropdown( | |
label="π Aspect Ratio", | |
choices=list(ASPECT_RATIOS.keys()), | |
value="16:9", | |
info="Choose ratio optimized for social media platforms" | |
) | |
# Ratio description | |
ratio_info = gr.Markdown(value=f"Selected ratio: {ASPECT_RATIOS['16:9']}") | |
# Seed setting | |
seed = gr.Number( | |
label="π² Random Seed", | |
value=42, | |
precision=0, | |
info="Use same seed value to reproduce same results" | |
) | |
# Fixed settings display | |
watermark_info = "ginigen.com" if VIDEO_PROCESSING_AVAILABLE else "ginigen.com (requires cv2)" | |
gr.Markdown(f""" | |
### π Fixed Settings | |
- **Duration**: 5 seconds | |
- **Resolution**: 480p | |
- **Watermark**: {watermark_info} | |
""") | |
with gr.Column(scale=2): | |
# Prompt input | |
prompt = gr.Textbox( | |
label="βοΈ Prompt", | |
lines=5, | |
placeholder="Describe the video you want to create.\nExample: The sun rises slowly between tall buildings. [Ground-level follow shot] Bicycle tires roll over a dew-covered street at dawn.", | |
value="" | |
) | |
# Generate button | |
generate_btn = gr.Button("π¬ Generate Video", variant="primary", size="lg") | |
# Results display | |
with gr.Column(): | |
output_video = gr.Video( | |
label="πΉ Generated Video", | |
autoplay=True | |
) | |
output_info = gr.Textbox( | |
label="Information", | |
lines=8, | |
interactive=False | |
) | |
# Usage instructions | |
with gr.Accordion("π How to Use", open=False): | |
gr.Markdown(""" | |
### Installation | |
1. **Install required packages**: | |
```bash | |
pip install gradio replicate pillow requests | |
``` | |
2. **For watermark support (optional)**: | |
```bash | |
pip install opencv-python | |
``` | |
3. **Set environment variable** (optional): | |
```bash | |
export RAPI_TOKEN="your-replicate-api-token" | |
``` | |
4. **Run**: | |
```bash | |
python app.py | |
``` | |
### Features | |
- **Text to Video**: Generate video from text description only | |
- **Image to Video**: Transform uploaded image into animated video | |
- **Aspect Ratios**: Choose ratios optimized for various social media platforms | |
- **Seed Value**: Use same seed to reproduce identical results | |
- **Watermark**: Automatically adds "ginigen.com" watermark (requires opencv-python) | |
### Prompt Writing Tips | |
- Use specific and detailed descriptions | |
- Specify camera movements (e.g., zoom in, pan left, tracking shot) | |
- Describe lighting and atmosphere (e.g., golden hour, dramatic lighting) | |
- Indicate movement speed (e.g., slowly, rapidly, gently) | |
### Troubleshooting | |
- **"Prediction interrupted (code: PA)"**: The model is warming up. Wait 2-3 minutes and try again, or try a simpler prompt first. | |
- **Repeated failures**: Try with a shorter, simpler prompt to warm up the model. | |
- **Timeout errors**: The model might be cold starting. Wait 1-2 minutes and try again. | |
- **Model booting**: First requests after inactivity may take longer as the model boots up. | |
- **Extended wait times**: Complex prompts or server load may cause longer generation times. | |
- **Watermark not showing**: Install opencv-python for watermark support. | |
""") | |
# Examples | |
gr.Examples( | |
examples=[ | |
["Text to Video", "A cat walking", None, "16:9", 42], # Simple warm-up prompt | |
["Text to Video", "A serene lake at sunrise with mist rolling over the water. Camera slowly pans across the landscape as birds fly overhead.", None, "16:9", 42], | |
["Text to Video", "Urban street scene at night with neon lights reflecting on wet pavement. People walking with umbrellas, camera tracking forward.", None, "9:16", 123], | |
["Text to Video", "Close-up of a flower blooming in time-lapse, soft natural lighting, shallow depth of field.", None, "1:1", 789], | |
], | |
inputs=[mode, prompt, image_input, aspect_ratio, seed], | |
label="Example Prompts (Start with the simple 'cat walking' for cold start)" | |
) | |
# Event handlers | |
mode.change( | |
fn=update_prompt_placeholder, | |
inputs=[mode], | |
outputs=[prompt] | |
) | |
mode.change( | |
fn=update_image_input, | |
inputs=[mode], | |
outputs=[image_input] | |
) | |
aspect_ratio.change( | |
fn=lambda x: f"Selected ratio: {ASPECT_RATIOS[x]}", | |
inputs=[aspect_ratio], | |
outputs=[ratio_info] | |
) | |
generate_btn.click( | |
fn=generate_video, | |
inputs=[mode, prompt, image_input, aspect_ratio, seed, api_key_input], | |
outputs=[output_video, output_info] | |
) | |
# Run app | |
if __name__ == "__main__": | |
app.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
inbrowser=True | |
) |