File size: 26,347 Bytes
2d767e1
061dfbf
 
2d767e1
061dfbf
2d767e1
 
967924e
2d767e1
 
 
dbac20f
c4dd2de
432e503
061dfbf
c4dd2de
2d767e1
c4dd2de
 
 
 
 
dbac20f
061dfbf
432e503
927c274
432e503
dbac20f
 
 
 
 
 
 
061dfbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927c274
061dfbf
432e503
 
 
 
 
 
 
 
 
 
061dfbf
927c274
061dfbf
 
2d767e1
061dfbf
2d767e1
927c274
061dfbf
2d767e1
061dfbf
2d767e1
 
061dfbf
 
 
 
 
2d767e1
 
dbac20f
 
 
 
 
 
 
061dfbf
432e503
 
 
 
dbac20f
432e503
 
 
 
927c274
432e503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d767e1
 
 
927c274
 
 
 
 
2d767e1
 
 
 
 
927c274
2d767e1
927c274
2d767e1
927c274
061dfbf
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061dfbf
 
 
 
 
 
 
 
 
2d767e1
 
 
 
 
 
 
432e503
 
 
 
 
 
927c274
 
 
 
 
 
061dfbf
2d767e1
061dfbf
 
dbac20f
 
2d767e1
 
432e503
 
dbac20f
2d767e1
 
d6a6a48
 
2d767e1
 
 
 
 
 
b0ec3f5
432e503
 
2d767e1
dbac20f
2d767e1
 
432e503
 
dbac20f
 
2d767e1
dbac20f
2d767e1
 
432e503
2d767e1
 
 
 
927c274
 
 
2d767e1
 
 
 
061dfbf
 
 
2d767e1
 
6a6682f
927c274
6a6682f
2d767e1
 
927c274
2d767e1
061dfbf
927c274
 
 
 
 
061dfbf
 
 
 
927c274
2d767e1
 
 
 
 
 
061dfbf
2d767e1
 
 
 
 
 
 
 
 
 
 
432e503
927c274
432e503
2d767e1
 
 
 
 
 
 
927c274
061dfbf
a82f1b3
 
061dfbf
 
 
 
a82f1b3
 
2d767e1
 
 
 
061dfbf
 
927c274
 
2d767e1
927c274
061dfbf
927c274
 
 
 
 
 
 
061dfbf
927c274
 
 
061dfbf
927c274
 
2d767e1
927c274
 
 
 
 
2d767e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
927c274
 
 
 
 
2d767e1
 
927c274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d767e1
927c274
 
 
 
2d767e1
 
 
927c274
2d767e1
 
 
 
 
 
927c274
 
2d767e1
 
 
 
 
 
 
 
061dfbf
 
 
 
 
 
2d767e1
 
 
 
 
 
 
 
 
927c274
 
 
2d767e1
 
 
 
927c274
 
2d767e1
 
 
 
 
927c274
 
 
 
 
 
 
 
061dfbf
927c274
 
 
2d767e1
 
927c274
 
 
2d767e1
 
 
dbac20f
 
2d767e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
import torch
import torch.nn.functional as F
from diffusers import AutoencoderKLWan, WanVideoTextToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from diffusers.models import Transformer2DModel
import gradio as gr
import tempfile
import spaces
from huggingface_hub import hf_hub_download
import numpy as np
import random
import logging
import os
import gc
from typing import List, Optional, Union

# MMAudio imports
try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

# Set environment variables
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
os.environ['HF_HUB_CACHE'] = '/tmp/hub'

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# NAG-enhanced Pipeline
class NAGWanPipeline(WanVideoTextToVideoPipeline):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.nag_scale = 0.0
        self.nag_tau = 3.5
        self.nag_alpha = 0.5
    
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        nag_negative_prompt: Optional[Union[str, List[str]]] = None,
        nag_scale: float = 0.0,
        nag_tau: float = 3.5,
        nag_alpha: float = 0.5,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_frames: int = 16,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[dict] = None,
        clip_skip: Optional[int] = None,
    ):
        # Use NAG negative prompt if provided
        if nag_negative_prompt is not None:
            negative_prompt = nag_negative_prompt
        
        # Store NAG parameters
        self.nag_scale = nag_scale
        self.nag_tau = nag_tau
        self.nag_alpha = nag_alpha
        
        # Override the transformer's forward method to apply NAG
        if hasattr(self, 'transformer') and nag_scale > 0:
            original_forward = self.transformer.forward
            
            def nag_forward(hidden_states, *args, **kwargs):
                # Standard forward pass
                output = original_forward(hidden_states, *args, **kwargs)
                
                # Apply NAG guidance
                if nag_scale > 0 and not self.transformer.training:
                    # Simple NAG implementation - enhance motion consistency
                    batch_size, channels, frames, height, width = hidden_states.shape
                    
                    # Compute temporal attention-like guidance
                    hidden_flat = hidden_states.view(batch_size, channels, -1)
                    attention = F.softmax(hidden_flat * nag_tau, dim=-1)
                    
                    # Apply normalized guidance
                    guidance = attention.mean(dim=2, keepdim=True) * nag_alpha
                    guidance = guidance.unsqueeze(-1).unsqueeze(-1)
                    
                    # Scale and add guidance
                    if hasattr(output, 'sample'):
                        output.sample = output.sample + nag_scale * guidance * hidden_states
                    else:
                        output = output + nag_scale * guidance * hidden_states
                
                return output
            
            # Temporarily replace forward method
            self.transformer.forward = nag_forward
        
        # Call parent pipeline
        result = super().__call__(
            prompt=prompt,
            height=height,
            width=width,
            num_frames=num_frames,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
            cross_attention_kwargs=cross_attention_kwargs,
            clip_skip=clip_skip,
        )
        
        # Restore original forward method
        if hasattr(self, 'transformer') and hasattr(self.transformer, 'forward'):
            self.transformer.forward = original_forward
        
        return result

# Clean up temp files
def cleanup_temp_files():
    temp_dir = tempfile.gettempdir()
    for filename in os.listdir(temp_dir):
        filepath = os.path.join(temp_dir, filename)
        try:
            if filename.endswith(('.mp4', '.flac', '.wav')):
                os.remove(filepath)
        except:
            pass

# Video generation model setup
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

# Load the model components
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = NAGWanPipeline.from_pretrained(
    MODEL_ID, vae=vae, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

# Load LoRA weights for faster generation
causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

# Audio generation model setup
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16

# Global variables for audio model
audio_model = None
audio_net = None
audio_feature_utils = None
audio_seq_cfg = None

def load_audio_model():
    global audio_model, audio_net, audio_feature_utils, audio_seq_cfg
    
    if audio_net is None:
        audio_model = all_model_cfg['small_16k']
        audio_model.download_if_needed()
        setup_eval_logging()
        
        seq_cfg = audio_model.seq_cfg
        net = get_my_mmaudio(audio_model.model_name).to(device, dtype).eval()
        net.load_weights(torch.load(audio_model.model_path, map_location=device, weights_only=True))
        log.info(f'Loaded weights from {audio_model.model_path}')

        feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model.vae_path,
                                      synchformer_ckpt=audio_model.synchformer_ckpt,
                                      enable_conditions=True,
                                      mode=audio_model.mode,
                                      bigvgan_vocoder_ckpt=audio_model.bigvgan_16k_path,
                                      need_vae_encoder=False)
        feature_utils = feature_utils.to(device, dtype).eval()
        
        audio_net = net
        audio_feature_utils = feature_utils
        audio_seq_cfg = seq_cfg
    
    return audio_net, audio_feature_utils, audio_seq_cfg

# Constants
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 129

DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
default_prompt = "A ginger cat passionately plays electric guitar with intensity and emotion on a stage"
default_audio_prompt = ""
default_audio_negative_prompt = "music"

# CSS
custom_css = """
/* 전체 λ°°κ²½ κ·ΈλΌλ””μ–ΈνŠΈ */
.gradio-container {
    font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 25%, #f093fb 50%, #f5576c 75%, #fa709a 100%) !important;
    background-size: 400% 400% !important;
    animation: gradientShift 15s ease infinite !important;
}

@keyframes gradientShift {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

/* 메인 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.main-container {
    backdrop-filter: blur(10px);
    background: rgba(255, 255, 255, 0.1) !important;
    border-radius: 20px !important;
    padding: 30px !important;
    box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37) !important;
    border: 1px solid rgba(255, 255, 255, 0.18) !important;
}

/* 헀더 μŠ€νƒ€μΌ */
h1 {
    background: linear-gradient(45deg, #ffffff, #f0f0f0) !important;
    -webkit-background-clip: text !important;
    -webkit-text-fill-color: transparent !important;
    background-clip: text !important;
    font-weight: 800 !important;
    font-size: 2.5rem !important;
    text-align: center !important;
    margin-bottom: 2rem !important;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.1) !important;
}

/* μ»΄ν¬λ„ŒνŠΈ μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.input-container, .output-container {
    background: rgba(255, 255, 255, 0.08) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin: 10px 0 !important;
    backdrop-filter: blur(5px) !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
}

/* μž…λ ₯ ν•„λ“œ μŠ€νƒ€μΌ */
input, textarea, .gr-box {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid rgba(255, 255, 255, 0.3) !important;
    border-radius: 10px !important;
    color: #333 !important;
    transition: all 0.3s ease !important;
}

input:focus, textarea:focus {
    background: rgba(255, 255, 255, 1) !important;
    border-color: #667eea !important;
    box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}

/* λ²„νŠΌ μŠ€νƒ€μΌ */
.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    color: white !important;
    font-weight: 600 !important;
    font-size: 1.1rem !important;
    padding: 12px 30px !important;
    border-radius: 50px !important;
    border: none !important;
    cursor: pointer !important;
    transition: all 0.3s ease !important;
    box-shadow: 0 4px 15px rgba(102, 126, 234, 0.4) !important;
}

.generate-btn:hover {
    transform: translateY(-2px) !important;
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.6) !important;
}

/* μŠ¬λΌμ΄λ” μŠ€νƒ€μΌ */
input[type="range"] {
    background: transparent !important;
}

input[type="range"]::-webkit-slider-track {
    background: rgba(255, 255, 255, 0.3) !important;
    border-radius: 5px !important;
    height: 6px !important;
}

input[type="range"]::-webkit-slider-thumb {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    border: 2px solid white !important;
    border-radius: 50% !important;
    cursor: pointer !important;
    width: 18px !important;
    height: 18px !important;
    -webkit-appearance: none !important;
}

/* Accordion μŠ€νƒ€μΌ */
.gr-accordion {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 10px !important;
    border: 1px solid rgba(255, 255, 255, 0.1) !important;
    margin: 15px 0 !important;
}

/* 라벨 μŠ€νƒ€μΌ */
label {
    color: #ffffff !important;
    font-weight: 500 !important;
    font-size: 0.95rem !important;
    margin-bottom: 5px !important;
}

/* λΉ„λ””μ˜€ 좜λ ₯ μ˜μ—­ */
video {
    border-radius: 15px !important;
    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.3) !important;
}

/* Examples μ„Ήμ…˜ μŠ€νƒ€μΌ */
.gr-examples {
    background: rgba(255, 255, 255, 0.05) !important;
    border-radius: 15px !important;
    padding: 20px !important;
    margin-top: 20px !important;
}

/* Checkbox μŠ€νƒ€μΌ */
input[type="checkbox"] {
    accent-color: #667eea !important;
}

/* Radio λ²„νŠΌ μŠ€νƒ€μΌ */
input[type="radio"] {
    accent-color: #667eea !important;
}

/* Info box */
.info-box {
    background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%);
    border-radius: 10px;
    padding: 15px;
    margin: 10px 0;
    border-left: 4px solid #667eea;
}

/* λ°˜μ‘ν˜• μ• λ‹ˆλ©”μ΄μ…˜ */
@media (max-width: 768px) {
    h1 { font-size: 2rem !important; }
    .main-container { padding: 20px !important; }
}
"""

def clear_cache():
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()
    gc.collect()

def get_duration(prompt, nag_negative_prompt, nag_scale,
                height, width, duration_seconds,
                steps, seed, randomize_seed,
                audio_mode, audio_prompt, audio_negative_prompt,
                audio_seed, audio_steps, audio_cfg_strength,
                progress):
    duration = int(duration_seconds) * int(steps) * 2.25 + 5
    if audio_mode == "Enable Audio":
        duration += 60
    return duration

@torch.inference_mode()
def add_audio_to_video(video_path, duration_sec, audio_prompt, audio_negative_prompt, 
                      audio_seed, audio_steps, audio_cfg_strength):
    net, feature_utils, seq_cfg = load_audio_model()
    
    rng = torch.Generator(device=device)
    if audio_seed >= 0:
        rng.manual_seed(audio_seed)
    else:
        rng.seed()
    
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
    
    video_info = load_video(video_path, duration_sec)
    clip_frames = video_info.clip_frames.unsqueeze(0)
    sync_frames = video_info.sync_frames.unsqueeze(0)
    duration = video_info.duration_sec
    seq_cfg.duration = duration
    net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
    
    audios = generate(clip_frames,
                      sync_frames, [audio_prompt],
                      negative_text=[audio_negative_prompt],
                      feature_utils=feature_utils,
                      net=net,
                      fm=fm,
                      rng=rng,
                      cfg_strength=audio_cfg_strength)
    audio = audios.float().cpu()[0]
    
    video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    make_video(video_info, video_with_audio_path, audio, sampling_rate=seq_cfg.sampling_rate)
    
    return video_with_audio_path

@spaces.GPU(duration=get_duration)
def generate_video(prompt, nag_negative_prompt, nag_scale,
                   height, width, duration_seconds,
                   steps, seed, randomize_seed,
                   audio_mode, audio_prompt, audio_negative_prompt,
                   audio_seed, audio_steps, audio_cfg_strength,
                   progress=gr.Progress(track_tqdm=True)):
    
    if not prompt.strip():
        raise gr.Error("Please enter a text prompt to generate video.")
    
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    # Generate video using NAG
    with torch.inference_mode():
        output_frames_list = pipe(
            prompt=prompt,
            nag_negative_prompt=nag_negative_prompt,
            nag_scale=nag_scale,
            nag_tau=3.5,
            nag_alpha=0.5,
            height=target_h, 
            width=target_w, 
            num_frames=num_frames,
            guidance_scale=0.,  # NAG replaces traditional guidance
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    # Save video without audio
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    
    # Generate audio if enabled
    video_with_audio_path = None
    if audio_mode == "Enable Audio":
        progress(0.5, desc="Generating audio...")
        video_with_audio_path = add_audio_to_video(
            video_path, duration_seconds, 
            audio_prompt, audio_negative_prompt,
            audio_seed, audio_steps, audio_cfg_strength
        )
    
    clear_cache()
    cleanup_temp_files()
    
    return video_path, video_with_audio_path, current_seed

def update_audio_visibility(audio_mode):
    return gr.update(visible=(audio_mode == "Enable Audio"))

with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes=["main-container"]):
        gr.Markdown("# ✨ Fast NAG T2V (14B) with Audio Generation")
        gr.Markdown("### πŸš€ Normalized Attention Guidance + CausVid LoRA + MMAudio")

        gr.HTML("""
        <div class="info-box">
            <p>🎯 <strong>NAG (Normalized Attention Guidance)</strong>: Enhanced motion consistency and quality</p>
            <p>⚑ <strong>Speed</strong>: Generate videos in just 4-8 steps with CausVid LoRA</p>
            <p>🎡 <strong>Audio</strong>: Optional synchronized audio generation with MMAudio</p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(elem_classes=["input-container"]):
                prompt_input = gr.Textbox(
                    label="✨ Video Prompt",
                    value=default_prompt,
                    placeholder="Describe your video scene in detail...",
                    lines=3
                )
                
                with gr.Accordion("🎨 NAG Settings", open=True):
                    nag_negative_prompt = gr.Textbox(
                        label="❌ NAG Negative Prompt",
                        value=DEFAULT_NAG_NEGATIVE_PROMPT,
                        lines=2
                    )
                    nag_scale = gr.Slider(
                        label="🎯 NAG Scale",
                        minimum=0.0,
                        maximum=20.0,
                        step=0.25,
                        value=11.0,
                        info="0 = No NAG, 11 = Recommended, 20 = Maximum guidance"
                    )
                
                duration_seconds_input = gr.Slider(
                    minimum=1,
                    maximum=8,
                    step=1,
                    value=DEFAULT_DURATION_SECONDS,
                    label="⏱️ Duration (seconds)",
                    info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps."
                )
                
                audio_mode = gr.Radio(
                    choices=["Video Only", "Enable Audio"],
                    value="Video Only",
                    label="🎡 Audio Mode",
                    info="Enable to add audio to your generated video"
                )
                
                with gr.Column(visible=False) as audio_settings:
                    audio_prompt = gr.Textbox(
                        label="🎡 Audio Prompt",
                        value=default_audio_prompt,
                        placeholder="Describe the audio you want (e.g., 'waves, seagulls', 'footsteps on gravel')",
                        lines=2
                    )
                    audio_negative_prompt = gr.Textbox(
                        label="❌ Audio Negative Prompt",
                        value=default_audio_negative_prompt,
                        lines=2
                    )
                    with gr.Row():
                        audio_seed = gr.Number(
                            label="🎲 Audio Seed",
                            value=-1,
                            precision=0,
                            minimum=-1
                        )
                        audio_steps = gr.Slider(
                            minimum=1,
                            maximum=50,
                            step=1,
                            value=25,
                            label="πŸš€ Audio Steps"
                        )
                        audio_cfg_strength = gr.Slider(
                            minimum=1.0,
                            maximum=10.0,
                            step=0.5,
                            value=4.5,
                            label="🎯 Audio Guidance"
                        )
                
                with gr.Accordion("βš™οΈ Advanced Settings", open=False):
                    with gr.Row():
                        height_input = gr.Slider(
                            minimum=SLIDER_MIN_H,
                            maximum=SLIDER_MAX_H,
                            step=MOD_VALUE,
                            value=DEFAULT_H_SLIDER_VALUE,
                            label=f"πŸ“ Output Height (Γ—{MOD_VALUE})"
                        )
                        width_input = gr.Slider(
                            minimum=SLIDER_MIN_W,
                            maximum=SLIDER_MAX_W,
                            step=MOD_VALUE,
                            value=DEFAULT_W_SLIDER_VALUE,
                            label=f"πŸ“ Output Width (Γ—{MOD_VALUE})"
                        )
                    with gr.Row():
                        steps_slider = gr.Slider(
                            minimum=1,
                            maximum=8,
                            step=1,
                            value=DEFAULT_STEPS,
                            label="πŸš€ Inference Steps"
                        )
                        seed_input = gr.Slider(
                            label="🎲 Seed",
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=DEFAULT_SEED,
                            interactive=True
                        )
                    randomize_seed_checkbox = gr.Checkbox(
                        label="πŸ”€ Randomize seed",
                        value=True,
                        interactive=True
                    )

                generate_button = gr.Button(
                    "🎬 Generate Video",
                    variant="primary",
                    elem_classes=["generate-btn"]
                )
                
            with gr.Column(elem_classes=["output-container"]):
                video_output = gr.Video(
                    label="πŸŽ₯ Generated Video",
                    autoplay=True,
                    interactive=False
                )
                video_with_audio_output = gr.Video(
                    label="πŸŽ₯ Generated Video with Audio",
                    autoplay=True,
                    interactive=False,
                    visible=False
                )
                
                gr.HTML("""
                    <div style="text-align: center; margin-top: 20px; color: #ffffff;">
                        <p>πŸ’‘ Tip: Try different NAG scales for varied artistic effects!</p>
                    </div>
                """)

        # Event handlers
        audio_mode.change(
            fn=update_audio_visibility,
            inputs=[audio_mode],
            outputs=[audio_settings, video_with_audio_output]
        )
        
        ui_inputs = [
            prompt_input, nag_negative_prompt, nag_scale,
            height_input, width_input, duration_seconds_input,
            steps_slider, seed_input, randomize_seed_checkbox,
            audio_mode, audio_prompt, audio_negative_prompt,
            audio_seed, audio_steps, audio_cfg_strength
        ]
        generate_button.click(
            fn=generate_video,
            inputs=ui_inputs,
            outputs=[video_output, video_with_audio_output, seed_input]
        )

        with gr.Column():
            gr.Examples(
                examples=[
                    ["A ginger cat passionately plays electric guitar with intensity and emotion on a stage. The background is shrouded in deep darkness. Spotlights cast dramatic shadows.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
                     DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
                     DEFAULT_STEPS, DEFAULT_SEED, False,
                     "Enable Audio", "electric guitar riffs, cat meowing", default_audio_negative_prompt, -1, 25, 4.5],
                    ["A red vintage Porsche convertible flying over a rugged coastal cliff. Monstrous waves violently crashing against the rocks below. A lighthouse stands tall atop the cliff.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
                     DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
                     DEFAULT_STEPS, DEFAULT_SEED, False,
                     "Enable Audio", "car engine roaring, ocean waves crashing, wind", default_audio_negative_prompt, -1, 25, 4.5],
                    ["Enormous glowing jellyfish float slowly across a sky filled with soft clouds. Their tentacles shimmer with iridescent light as they drift above a peaceful mountain landscape. Magical and dreamlike, captured in a wide shot. Surreal realism style with detailed textures.", DEFAULT_NAG_NEGATIVE_PROMPT, 11,
                     DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, DEFAULT_DURATION_SECONDS,
                     DEFAULT_STEPS, DEFAULT_SEED, False,
                     "Video Only", "", default_audio_negative_prompt, -1, 25, 4.5],
                ],
                inputs=ui_inputs,
                outputs=[video_output, video_with_audio_output, seed_input],
                fn=generate_video,
                cache_examples="lazy",
                label="🌟 Example Gallery"
            )

if __name__ == "__main__":
    demo.queue().launch()