Spaces:
Running
on
Zero
Running
on
Zero
Delete app-backup.py
Browse files- app-backup.py +0 -381
app-backup.py
DELETED
|
@@ -1,381 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import shlex
|
| 3 |
-
import subprocess
|
| 4 |
-
|
| 5 |
-
subprocess.run(
|
| 6 |
-
shlex.split("pip install flash-attn --no-build-isolation"),
|
| 7 |
-
env=os.environ | {"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
| 8 |
-
check=True,
|
| 9 |
-
)
|
| 10 |
-
subprocess.run(
|
| 11 |
-
shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.4/mamba_ssm-2.2.4+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"),
|
| 12 |
-
check=True,
|
| 13 |
-
)
|
| 14 |
-
subprocess.run(
|
| 15 |
-
shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.5.0.post8/causal_conv1d-1.5.0.post8+cu12torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"),
|
| 16 |
-
check=True,
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
import spaces
|
| 20 |
-
import torch
|
| 21 |
-
import torchaudio
|
| 22 |
-
import gradio as gr
|
| 23 |
-
from os import getenv
|
| 24 |
-
|
| 25 |
-
from zonos.model import Zonos
|
| 26 |
-
from zonos.conditioning import make_cond_dict, supported_language_codes
|
| 27 |
-
|
| 28 |
-
device = "cuda"
|
| 29 |
-
MODEL_NAMES = ["Zyphra/Zonos-v0.1-transformer", "Zyphra/Zonos-v0.1-hybrid"]
|
| 30 |
-
MODELS = {name: Zonos.from_pretrained(name, device=device) for name in MODEL_NAMES}
|
| 31 |
-
for model in MODELS.values():
|
| 32 |
-
model.requires_grad_(False).eval()
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def update_ui(model_choice):
|
| 36 |
-
"""
|
| 37 |
-
Dynamically show/hide UI elements based on the model's conditioners.
|
| 38 |
-
We do NOT display 'language_id' or 'ctc_loss' even if they exist in the model.
|
| 39 |
-
"""
|
| 40 |
-
model = MODELS[model_choice]
|
| 41 |
-
cond_names = [c.name for c in model.prefix_conditioner.conditioners]
|
| 42 |
-
print("Conditioners in this model:", cond_names)
|
| 43 |
-
|
| 44 |
-
text_update = gr.update(visible=("espeak" in cond_names))
|
| 45 |
-
language_update = gr.update(visible=("espeak" in cond_names))
|
| 46 |
-
speaker_audio_update = gr.update(visible=("speaker" in cond_names))
|
| 47 |
-
prefix_audio_update = gr.update(visible=True)
|
| 48 |
-
emotion1_update = gr.update(visible=("emotion" in cond_names))
|
| 49 |
-
emotion2_update = gr.update(visible=("emotion" in cond_names))
|
| 50 |
-
emotion3_update = gr.update(visible=("emotion" in cond_names))
|
| 51 |
-
emotion4_update = gr.update(visible=("emotion" in cond_names))
|
| 52 |
-
emotion5_update = gr.update(visible=("emotion" in cond_names))
|
| 53 |
-
emotion6_update = gr.update(visible=("emotion" in cond_names))
|
| 54 |
-
emotion7_update = gr.update(visible=("emotion" in cond_names))
|
| 55 |
-
emotion8_update = gr.update(visible=("emotion" in cond_names))
|
| 56 |
-
vq_single_slider_update = gr.update(visible=("vqscore_8" in cond_names))
|
| 57 |
-
fmax_slider_update = gr.update(visible=("fmax" in cond_names))
|
| 58 |
-
pitch_std_slider_update = gr.update(visible=("pitch_std" in cond_names))
|
| 59 |
-
speaking_rate_slider_update = gr.update(visible=("speaking_rate" in cond_names))
|
| 60 |
-
dnsmos_slider_update = gr.update(visible=("dnsmos_ovrl" in cond_names))
|
| 61 |
-
speaker_noised_checkbox_update = gr.update(visible=("speaker_noised" in cond_names))
|
| 62 |
-
unconditional_keys_update = gr.update(
|
| 63 |
-
choices=[name for name in cond_names if name not in ("espeak", "language_id")]
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
return (
|
| 67 |
-
text_update,
|
| 68 |
-
language_update,
|
| 69 |
-
speaker_audio_update,
|
| 70 |
-
prefix_audio_update,
|
| 71 |
-
emotion1_update,
|
| 72 |
-
emotion2_update,
|
| 73 |
-
emotion3_update,
|
| 74 |
-
emotion4_update,
|
| 75 |
-
emotion5_update,
|
| 76 |
-
emotion6_update,
|
| 77 |
-
emotion7_update,
|
| 78 |
-
emotion8_update,
|
| 79 |
-
vq_single_slider_update,
|
| 80 |
-
fmax_slider_update,
|
| 81 |
-
pitch_std_slider_update,
|
| 82 |
-
speaking_rate_slider_update,
|
| 83 |
-
dnsmos_slider_update,
|
| 84 |
-
speaker_noised_checkbox_update,
|
| 85 |
-
unconditional_keys_update,
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
@spaces.GPU(duration=120)
|
| 90 |
-
def generate_audio(
|
| 91 |
-
model_choice,
|
| 92 |
-
text,
|
| 93 |
-
language,
|
| 94 |
-
speaker_audio,
|
| 95 |
-
prefix_audio,
|
| 96 |
-
e1,
|
| 97 |
-
e2,
|
| 98 |
-
e3,
|
| 99 |
-
e4,
|
| 100 |
-
e5,
|
| 101 |
-
e6,
|
| 102 |
-
e7,
|
| 103 |
-
e8,
|
| 104 |
-
vq_single,
|
| 105 |
-
fmax,
|
| 106 |
-
pitch_std,
|
| 107 |
-
speaking_rate,
|
| 108 |
-
dnsmos_ovrl,
|
| 109 |
-
speaker_noised,
|
| 110 |
-
cfg_scale,
|
| 111 |
-
min_p,
|
| 112 |
-
seed,
|
| 113 |
-
randomize_seed,
|
| 114 |
-
unconditional_keys,
|
| 115 |
-
progress=gr.Progress(),
|
| 116 |
-
):
|
| 117 |
-
"""
|
| 118 |
-
Generates audio based on the provided UI parameters.
|
| 119 |
-
We do NOT use language_id or ctc_loss even if the model has them.
|
| 120 |
-
"""
|
| 121 |
-
selected_model = MODELS[model_choice]
|
| 122 |
-
|
| 123 |
-
speaker_noised_bool = bool(speaker_noised)
|
| 124 |
-
fmax = float(fmax)
|
| 125 |
-
pitch_std = float(pitch_std)
|
| 126 |
-
speaking_rate = float(speaking_rate)
|
| 127 |
-
dnsmos_ovrl = float(dnsmos_ovrl)
|
| 128 |
-
cfg_scale = float(cfg_scale)
|
| 129 |
-
min_p = float(min_p)
|
| 130 |
-
seed = int(seed)
|
| 131 |
-
max_new_tokens = 86 * 30
|
| 132 |
-
|
| 133 |
-
if randomize_seed:
|
| 134 |
-
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
| 135 |
-
torch.manual_seed(seed)
|
| 136 |
-
|
| 137 |
-
speaker_embedding = None
|
| 138 |
-
if speaker_audio is not None and "speaker" not in unconditional_keys:
|
| 139 |
-
wav, sr = torchaudio.load(speaker_audio)
|
| 140 |
-
speaker_embedding = selected_model.make_speaker_embedding(wav, sr)
|
| 141 |
-
speaker_embedding = speaker_embedding.to(device, dtype=torch.bfloat16)
|
| 142 |
-
|
| 143 |
-
audio_prefix_codes = None
|
| 144 |
-
if prefix_audio is not None:
|
| 145 |
-
wav_prefix, sr_prefix = torchaudio.load(prefix_audio)
|
| 146 |
-
wav_prefix = wav_prefix.mean(0, keepdim=True)
|
| 147 |
-
wav_prefix = torchaudio.functional.resample(wav_prefix, sr_prefix, selected_model.autoencoder.sampling_rate)
|
| 148 |
-
wav_prefix = wav_prefix.to(device, dtype=torch.float32)
|
| 149 |
-
with torch.autocast(device, dtype=torch.float32):
|
| 150 |
-
audio_prefix_codes = selected_model.autoencoder.encode(wav_prefix.unsqueeze(0))
|
| 151 |
-
|
| 152 |
-
emotion_tensor = torch.tensor(list(map(float, [e1, e2, e3, e4, e5, e6, e7, e8])), device=device)
|
| 153 |
-
|
| 154 |
-
vq_val = float(vq_single)
|
| 155 |
-
vq_tensor = torch.tensor([vq_val] * 8, device=device).unsqueeze(0)
|
| 156 |
-
|
| 157 |
-
cond_dict = make_cond_dict(
|
| 158 |
-
text=text,
|
| 159 |
-
language=language,
|
| 160 |
-
speaker=speaker_embedding,
|
| 161 |
-
emotion=emotion_tensor,
|
| 162 |
-
vqscore_8=vq_tensor,
|
| 163 |
-
fmax=fmax,
|
| 164 |
-
pitch_std=pitch_std,
|
| 165 |
-
speaking_rate=speaking_rate,
|
| 166 |
-
dnsmos_ovrl=dnsmos_ovrl,
|
| 167 |
-
speaker_noised=speaker_noised_bool,
|
| 168 |
-
device=device,
|
| 169 |
-
unconditional_keys=unconditional_keys,
|
| 170 |
-
)
|
| 171 |
-
conditioning = selected_model.prepare_conditioning(cond_dict)
|
| 172 |
-
|
| 173 |
-
estimated_generation_duration = 30 * len(text) / 400
|
| 174 |
-
estimated_total_steps = int(estimated_generation_duration * 86)
|
| 175 |
-
|
| 176 |
-
def update_progress(_frame: torch.Tensor, step: int, _total_steps: int) -> bool:
|
| 177 |
-
progress((step, estimated_total_steps))
|
| 178 |
-
return True
|
| 179 |
-
|
| 180 |
-
codes = selected_model.generate(
|
| 181 |
-
prefix_conditioning=conditioning,
|
| 182 |
-
audio_prefix_codes=audio_prefix_codes,
|
| 183 |
-
max_new_tokens=max_new_tokens,
|
| 184 |
-
cfg_scale=cfg_scale,
|
| 185 |
-
batch_size=1,
|
| 186 |
-
sampling_params=dict(min_p=min_p),
|
| 187 |
-
callback=update_progress,
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
wav_out = selected_model.autoencoder.decode(codes).cpu().detach()
|
| 191 |
-
sr_out = selected_model.autoencoder.sampling_rate
|
| 192 |
-
if wav_out.dim() == 2 and wav_out.size(0) > 1:
|
| 193 |
-
wav_out = wav_out[0:1, :]
|
| 194 |
-
return (sr_out, wav_out.squeeze().numpy()), seed
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
def build_interface():
|
| 198 |
-
# UI 테마를 세련되게 변경하기 위해 gr.themes.Soft() 테마를 사용합니다.
|
| 199 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 200 |
-
with gr.Row():
|
| 201 |
-
with gr.Column():
|
| 202 |
-
model_choice = gr.Dropdown(
|
| 203 |
-
choices=MODEL_NAMES,
|
| 204 |
-
value="Zyphra/Zonos-v0.1-transformer",
|
| 205 |
-
label="Zonos Model Type",
|
| 206 |
-
info="Select the model variant to use.",
|
| 207 |
-
)
|
| 208 |
-
text = gr.Textbox(
|
| 209 |
-
label="Text to Synthesize",
|
| 210 |
-
value="Zonos uses eSpeak for text to phoneme conversion!",
|
| 211 |
-
lines=4,
|
| 212 |
-
max_length=500,
|
| 213 |
-
)
|
| 214 |
-
language = gr.Dropdown(
|
| 215 |
-
choices=supported_language_codes,
|
| 216 |
-
value="en-us",
|
| 217 |
-
label="Language Code",
|
| 218 |
-
info="Select a language code.",
|
| 219 |
-
)
|
| 220 |
-
prefix_audio = gr.Audio(
|
| 221 |
-
value="assets/silence_100ms.wav",
|
| 222 |
-
label="Optional Prefix Audio (continue from this audio)",
|
| 223 |
-
type="filepath",
|
| 224 |
-
)
|
| 225 |
-
with gr.Column():
|
| 226 |
-
speaker_audio = gr.Audio(
|
| 227 |
-
label="Optional Speaker Audio (for cloning)",
|
| 228 |
-
type="filepath",
|
| 229 |
-
)
|
| 230 |
-
speaker_noised_checkbox = gr.Checkbox(label="Denoise Speaker?", value=False)
|
| 231 |
-
|
| 232 |
-
with gr.Row():
|
| 233 |
-
with gr.Column():
|
| 234 |
-
gr.Markdown("## Conditioning Parameters")
|
| 235 |
-
dnsmos_slider = gr.Slider(1.0, 5.0, value=4.0, step=0.1, label="DNSMOS Overall")
|
| 236 |
-
fmax_slider = gr.Slider(0, 24000, value=24000, step=1, label="Fmax (Hz)")
|
| 237 |
-
vq_single_slider = gr.Slider(0.5, 0.8, 0.78, 0.01, label="VQ Score")
|
| 238 |
-
pitch_std_slider = gr.Slider(0.0, 300.0, value=45.0, step=1, label="Pitch Std")
|
| 239 |
-
speaking_rate_slider = gr.Slider(5.0, 30.0, value=15.0, step=0.5, label="Speaking Rate")
|
| 240 |
-
|
| 241 |
-
with gr.Column():
|
| 242 |
-
gr.Markdown("## Generation Parameters")
|
| 243 |
-
cfg_scale_slider = gr.Slider(1.0, 5.0, 2.0, 0.1, label="CFG Scale")
|
| 244 |
-
min_p_slider = gr.Slider(0.0, 1.0, 0.15, 0.01, label="Min P")
|
| 245 |
-
seed_number = gr.Number(label="Seed", value=420, precision=0)
|
| 246 |
-
randomize_seed_toggle = gr.Checkbox(label="Randomize Seed (before generation)", value=True)
|
| 247 |
-
|
| 248 |
-
with gr.Accordion("Advanced Parameters", open=False):
|
| 249 |
-
gr.Markdown(
|
| 250 |
-
"### Unconditional Toggles\n"
|
| 251 |
-
"Checking a box will make the model ignore the corresponding conditioning value and make it unconditional.\n"
|
| 252 |
-
'Practically this means the given conditioning feature will be unconstrained and "filled in automatically".'
|
| 253 |
-
)
|
| 254 |
-
with gr.Row():
|
| 255 |
-
unconditional_keys = gr.CheckboxGroup(
|
| 256 |
-
[
|
| 257 |
-
"speaker",
|
| 258 |
-
"emotion",
|
| 259 |
-
"vqscore_8",
|
| 260 |
-
"fmax",
|
| 261 |
-
"pitch_std",
|
| 262 |
-
"speaking_rate",
|
| 263 |
-
"dnsmos_ovrl",
|
| 264 |
-
"speaker_noised",
|
| 265 |
-
],
|
| 266 |
-
value=["emotion"],
|
| 267 |
-
label="Unconditional Keys",
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
gr.Markdown(
|
| 271 |
-
"### Emotion Sliders\n"
|
| 272 |
-
"Warning: The way these sliders work is not intuitive and may require some trial and error to get the desired effect.\n"
|
| 273 |
-
"Certain configurations can cause the model to become unstable. Setting emotion to unconditional may help."
|
| 274 |
-
)
|
| 275 |
-
with gr.Row():
|
| 276 |
-
emotion1 = gr.Slider(0.0, 1.0, 1.0, 0.05, label="Happiness")
|
| 277 |
-
emotion2 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Sadness")
|
| 278 |
-
emotion3 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Disgust")
|
| 279 |
-
emotion4 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Fear")
|
| 280 |
-
with gr.Row():
|
| 281 |
-
emotion5 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Surprise")
|
| 282 |
-
emotion6 = gr.Slider(0.0, 1.0, 0.05, 0.05, label="Anger")
|
| 283 |
-
emotion7 = gr.Slider(0.0, 1.0, 0.1, 0.05, label="Other")
|
| 284 |
-
emotion8 = gr.Slider(0.0, 1.0, 0.2, 0.05, label="Neutral")
|
| 285 |
-
|
| 286 |
-
with gr.Column():
|
| 287 |
-
generate_button = gr.Button("Generate Audio")
|
| 288 |
-
output_audio = gr.Audio(label="Generated Audio", type="numpy", autoplay=True)
|
| 289 |
-
|
| 290 |
-
model_choice.change(
|
| 291 |
-
fn=update_ui,
|
| 292 |
-
inputs=[model_choice],
|
| 293 |
-
outputs=[
|
| 294 |
-
text,
|
| 295 |
-
language,
|
| 296 |
-
speaker_audio,
|
| 297 |
-
prefix_audio,
|
| 298 |
-
emotion1,
|
| 299 |
-
emotion2,
|
| 300 |
-
emotion3,
|
| 301 |
-
emotion4,
|
| 302 |
-
emotion5,
|
| 303 |
-
emotion6,
|
| 304 |
-
emotion7,
|
| 305 |
-
emotion8,
|
| 306 |
-
vq_single_slider,
|
| 307 |
-
fmax_slider,
|
| 308 |
-
pitch_std_slider,
|
| 309 |
-
speaking_rate_slider,
|
| 310 |
-
dnsmos_slider,
|
| 311 |
-
speaker_noised_checkbox,
|
| 312 |
-
unconditional_keys,
|
| 313 |
-
],
|
| 314 |
-
)
|
| 315 |
-
|
| 316 |
-
# On page load, trigger the same UI refresh
|
| 317 |
-
demo.load(
|
| 318 |
-
fn=update_ui,
|
| 319 |
-
inputs=[model_choice],
|
| 320 |
-
outputs=[
|
| 321 |
-
text,
|
| 322 |
-
language,
|
| 323 |
-
speaker_audio,
|
| 324 |
-
prefix_audio,
|
| 325 |
-
emotion1,
|
| 326 |
-
emotion2,
|
| 327 |
-
emotion3,
|
| 328 |
-
emotion4,
|
| 329 |
-
emotion5,
|
| 330 |
-
emotion6,
|
| 331 |
-
emotion7,
|
| 332 |
-
emotion8,
|
| 333 |
-
vq_single_slider,
|
| 334 |
-
fmax_slider,
|
| 335 |
-
pitch_std_slider,
|
| 336 |
-
speaking_rate_slider,
|
| 337 |
-
dnsmos_slider,
|
| 338 |
-
speaker_noised_checkbox,
|
| 339 |
-
unconditional_keys,
|
| 340 |
-
],
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
-
# Generate audio on button click
|
| 344 |
-
generate_button.click(
|
| 345 |
-
fn=generate_audio,
|
| 346 |
-
inputs=[
|
| 347 |
-
model_choice,
|
| 348 |
-
text,
|
| 349 |
-
language,
|
| 350 |
-
speaker_audio,
|
| 351 |
-
prefix_audio,
|
| 352 |
-
emotion1,
|
| 353 |
-
emotion2,
|
| 354 |
-
emotion3,
|
| 355 |
-
emotion4,
|
| 356 |
-
emotion5,
|
| 357 |
-
emotion6,
|
| 358 |
-
emotion7,
|
| 359 |
-
emotion8,
|
| 360 |
-
vq_single_slider,
|
| 361 |
-
fmax_slider,
|
| 362 |
-
pitch_std_slider,
|
| 363 |
-
speaking_rate_slider,
|
| 364 |
-
dnsmos_slider,
|
| 365 |
-
speaker_noised_checkbox,
|
| 366 |
-
cfg_scale_slider,
|
| 367 |
-
min_p_slider,
|
| 368 |
-
seed_number,
|
| 369 |
-
randomize_seed_toggle,
|
| 370 |
-
unconditional_keys,
|
| 371 |
-
],
|
| 372 |
-
outputs=[output_audio, seed_number],
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
return demo
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
if __name__ == "__main__":
|
| 379 |
-
demo = build_interface()
|
| 380 |
-
share = getenv("GRADIO_SHARE", "False").lower() in ("true", "1", "t")
|
| 381 |
-
demo.launch(server_name="0.0.0.0", server_port=7860, share=share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|